
18.305 Fall 2004/05
Solutions to Assignment 5: The Stationary Phase Method

Provided by Mustafa Sabri Kilic

1. Find the leading term for each of the integrals below for λ >> 1.

(a)
R 1
−1 e

iλt3dt

(b)
R∞
1
eiλt

2
dt

(c)
R π

0
eiλ cos tdt

2. Find the leading term for each of the integrals below λ >> 1.

I(x) =

Z ∞

−∞
eixteit

5/5dt (1)

Consider both cases in which x > 0 or x < 0.

Solutions:

1. (a) I(λ) =
R 1
−1 e

iλt3dt

Can write

I(λ) =

Z 1

0

eiλt
3

dt+

Z 0

−1
eiλt

3

dt

We observe that the second integral is the complex conjugate of the first, hence

I(λ) = 2Re

Z 1

0

eiλt
3

dt

Moreover, we see that the point t = 0 is the only stationary phase point, which gives the
main contribution to the integral, therefore we can make the approximation

I(λ) ≈ 2Re
Z ∞

0

eiλt
3

dt = 2ReJ(λ)

where

J(λ) =

Z ∞

0

eiλt
3

dt

Note that we do not need to calculate the end point contributions, which would come out to
be of smalller order than the contribution of the stationary phase point-we are only asked
the leading term.
The integrand of J is oscillatory. We would like to change the contour into one on which is
exponentially decreasing, for then we we would be able to express it as a gamma function.
Thus we put

z3 = it3

where t is real. This means the path over which the integral is taken would be

z = i1/3t
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There are three roots for i1/3 : eiπ/6, e5iπ/6, e3iπ/2. An analysis of those paths brings that we
can only change the domain of integral, which is originally the real axis, into the straightline
making an angle π/6, which is the only case where we can close our contour with a zero
contribution arc. Thus

J = eiπ/6
Z ∞

0

e−λt
3

dt

Making one more variable change
τ = λt3

we arrive at

J =
eiπ/6

3λ1/3

Z ∞

0

e−ττ−2/3dτ =
eiπ/6

3λ1/3
Γ(1/3)

Therefore, the answer is given by

I(λ) ≈ 1

3λ1/3
Γ(1/3)

1. (b)
R∞
1
eiλx

2
dx

There is no stationary phase points in the domain of the integral, hence this is an integral
in the form (8.36) of the book, i.e of the form

I(λ) =

Z b

a

eiλu(x)h(x)dx (2)

for which the end point contributions are important. Hence the leading form can be given
by (8.39) in the book, which is

eiλu(b)h(b)

iλu0(b)
− e

iλu(a)h(a)

iλu0(a)

In our case, we have only one end point, hence the leading term is

−e
iλu(1)h(1)

iλu0(1)
= − e

iλ

2iλ

1. (c)
R π

0
eiλ cosxdx

The stationary phase points are solutions to sinx = 0, which are x = 0,π. Since stationary
phase points contribute more than the end points, we do not consider end points for the
purpose of calculating the leading term. In this example, the end points are stationary
phase points, so they will already be taken care of when calculating the stationary phase
points, so in some sense, we can say that there is no end point contribution.
We use the formula (8.45) and (8.46) from the book which are

eiπ/4

s
2π

λu00(x0)
eiλu(x0)h(x0) and e−iπ/4

s
2π

λ|u00(x0)|e
iλu(x0)h(x0) (3)
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depending on the sign of u00(x0). Since the stationary phase points are end points, they
contribute only half of the quantity they would if they were interior points. Thus we finally
find

1

2
e−iπ/4

r
2π

λ
eiλ +

1

2
eiπ/4

r
2π

λ
e−iλ =

r
2π

λ
cos(λ− π

4
)

as the leading term.

2. The integral (1) is in the form (2), with u(t) = t, h(t) = eit
5/5. The integral has neither

points of stationary phase nor finite end points. We first treat the simpler case x < 0.
We start with scaling the variable of integration by the transformation t = (−x)1/4z,
and the integral (1) becomes

I(x) = (−x)1/4
Z ∞

−∞
eiΛf(z)dz

with f(z) = −z + 1
5
z5 and Λ = (−x)5/4. This last integrand has two stationary points

z = −1, 1, which are found by solving f 0(z) = −1 + z4 = 0. Therefore the integral can
be approximated by making use of (3), which give

e−iπ/4
r

π

2Λ
e4iΛ/5 + eiπ/4

r
π

2
e−4iΛ/5

therefore

I(x) = (−x)1/4
r
2π

Λ
cos(

4

5
Λ− π

4
)

= (−x)1/4
s

2π

(−x)5/4 cos(
4

5
(−x)5/4 − π

4
) =
√
2π(−x)−3/8 cos(4

5
(−x)5/4 − π

4
)

For the case x > 0, we scale the original integral with t = x1/4z, and the integral (1)
becomes

I(x) = x1/4
Z ∞

−∞
eiΛf(z)dz (4)

with f(z) = z + 1
5
z5 and Λ = x5/4. This integral still does not have any stationary

phase points, hence we look at the critical points of f by solving f 0(z) = 1 + z4 = 0
which gives z = eiπ/4, e3iπ/4, e5iπ/4, e7iπ/4.

Putting z = reiθ in f(z) = z + 1
5
z5 = r(cos θ + i sin θ) + 1

5
r5(cos 5θ + i sin 5θ). So the

integrand of (4) blows up for large r in the regions where

− sin 5θ > 0

and becomes exponentially small in the regions where sin 5θ > 0. These are shown in
the figure below along with the critical points of f. The regions in which the integrand
becomes exponentially large are shaded. We observe that we can deform the domain
of our integral as shown in the figure, to upwards, so that the path of the integral
now contains two of the critical points of f.We cannot deform the path of our integral
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Figure 1
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downwards, as the ”black” regions, over which the integrand becomes exponentially
large prevents us from doing so.

We calculate the relevant values

f(eiπ/4) =
4

5
eiπ/4, f 00(eiπ/4) = 4e3iπ/4

f(e3iπ/4) =
4

5
e3iπ/4, f 00(e3iπ/4) = 4eiπ/4

which means we have the expansions

iΛf(z) ≈ iΛ
4

5
eiπ/4 − 2Λeiπ/4(z − eiπ/4)2

iΛf(z) ≈ iΛ
4

5
e3iπ/4 − 2Λe−iπ/4(z − e3iπ/4)2

So the contributions from those critical points are calculated to be

x1/4
r

π

2Λeiπ/4
exp[iΛ

4

5
eiπ/4] + x1/4

r
π

2Λe−iπ/4
exp[iΛ

4

5
e3iπ/4]

which is √
2πx−3/8

√
2π exp(−2

√
2

5
x5/4) cos(

2
√
2

5
x5/4 − 1

8
π)
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