
18.305 Fall 2004/05
Solutions to Assignment 4: The Laplace method

Provided by Mustafa Sabri Kilic

1. Find the leading term for each of the integrals below for λ >> 1.

(a)
R 4
−1 e

−λx3(1 + x4)dx

(b)
R∞
1

√
x− 1e−λ coshxdx

(c)
R 2
0
eλx(1−x)dx

2. Find the leading term for each of the integrals below λ >> 1.

(a)
R 1
−1 e

−λx3dx

(b)
R∞
1
e−λx

2
dx

(c)
R 1
−2(sinx)e

−λx2dx

(d)
R π

−π e
−λ sinxdx

(e)
R∞
0
e−λxe−x

2
dx

(f)
R λ

0
ex

3
dx

(g)
R∞
0
e−λ(x+x

5)dx

3. Find the entire asymptotic series for each of the integrals in problem 2.

Solutions:
In the following, we assume the given integrals to be in the form

I(λ) =

Z b

a

h(x)e−λv(x)dx

1. (a) v(x) = x3, which has a minimum at the lower end point−1. Since v(x) is monoton-
ically increasing in [−1, 1], we can use the formula

I(λ) ≈ e
−λv(a)h(a)
λv0(a)

(1)

to obtain the leading term as

I(λ) ≈ 2e
λ

3λ

1



(b) The integral can be written as

I(λ) =

Z ∞

0

t1/2e−λ cosh(t+1)dt

=

Z ∞

0

t1/2e−λ[cosh 1+t sinh 1+..]dt

≈ e−λ cosh 1
Z ∞

0

t1/2e−λt sinh 1dt

= e−λ cosh 1
Z ∞

0

(
1

λ sinh 1
)3/2s1/2e−sds

=
e−λ cosh 1

(λ sinh 1)3/2
Γ(3/2) =

e−λ cosh 1

(λ sinh 1)3/2

√
π

2

(c) v(x) = −x(1− x) takes its minimum at x = 1/2, which is an interior point.
As v00(1/2) 6= 0, we can use the formula

I(λ) ≈
s

2π

λ|v00(x0)|e
−λv(x0)h(x0) (2)

to obtain the leading term

I(λ) ≈
r

π

λ
eλ/4

2. (a) v(x) = x3, which takes its minimum at x = −1. So, by using (1), we find

I(λ) ≈ eλ

3λ

(b) v(x) = x2, takes its minimum at x = 1. Therefore, using (1), we find

I(λ) ≈ e
−λ

2λ

(c) Z 1

−2
(sinx)e−λx

2

dx =

Z −1

−2
(sinx)e−λx

2

dx+

Z 1

−1
(sinx)e−λx

2

dx

where the second integral is zero, because its integrand is odd. Therefore, we only
consider the first integral. v(x) = x2, which takes its minimum at x = −1 and is
monotonically decreasing throughout [−2,−1]. Therefore, by using the formula

I(λ) ≈ −e
−λv(b)h(b)
λv0(b)

(3)

to obtain the leading term as

I(λ) ≈ −e
−λ

2λ
sin 1
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(d) v(x) = sinx takes its minimum at x = −π
2
, an interior point. Therefore, the

formula (2) gives the leading term r
2π

λ
eλ

(e) h(x) = e−x2 and v(x) = x, which takes its minimum at x = 0 and is monotonic
throughout the domain of integration. Therefore, the relevant formula is (3),
which gives

I(λ) ≈ 1
λ

(f) Since the main contribution comes from x = λ part, we can replace the integral
by

I(λ) =

Z λ

1

ex
3

dx

=

Z λ

1

1

3x2
3x2ex

3

dx =
1

3x2
ex

3|λ1 +
Z λ

1

2

3x3
ex

3

dx

which implies the leading term
1

3λ2
eλ

3

(g) v(x) = x+x5, which takes on its minimum at x = 0, therefore by using the formula
(3), we obtain

1

λ

3. (a) We first let s = x3 + 1, then the integral becomes

I(λ) = eλ
Z 2

0

e−λs
1

3
(1− s)2/3dx

where now the contribution comes from s = 0. So we can change the upper limit
to ∞. We further let ρ = λs, to obtain

I(λ) =
eλ

3λ

Z ∞

0

e−ρ(−ρ

λ
+ 1)2/3dx

The idea behind all those transformations is to have the leading term eλ

3λ
outside

the integral, as above. Now we expand, and get

I(λ) =
eλ

3λ

Z ∞

0

e−ρ
∞X
k=0

(−1)k 1
k!

Γ(2/3)

Γ(2/3− k)(
ρ

λ
)kdx =

eλ

3λ

Z ∞

0

e−ρ
∞X
k=0

1

k!

Γ(2/3 + k)

Γ(2/3)
(
ρ

λ
)kdx

We illegitimately change the order of integration and summation, to obtain the
asymptotic series

I(λ) =
eλ

3λ

∞X
k=0

1

k!

Γ(2/3 + k)

Γ(2/3)

1

λk

Z ∞

0

e−ρρkdx

=
eλ

3λ

∞X
k=0

Γ(2/3 + k)

Γ(2/3)

1

λk
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(b) We first let s = x2 − 1, then the integral becomes

I(λ) = e−λ
Z 2

0

e−λs
1

2
(s+ 1)−1/2ds

where now the contribution comes from s = 0. So we can change the upper limit
to ∞. We further let ρ = λs, to obtain

I(λ) =
e−λ

2λ

Z ∞

0

e−ρ(1 +
ρ

λ
)−1/2dx

The idea behind all those transformations is to have the leading term eλ

2λ
outside

the integral, as above. Now we expand, and get

I(λ) =
e−λ

2λ

Z ∞

0

e−ρ
∞X
k=0

1

k!
(−1)kΓ(1/2 + k)

Γ(1/2)
(
ρ

λ
)kdx

We illegitimately change the order of integration and summation, to obtain the
asymptotic series

I(λ) =
e−λ

2λ

∞X
k=0

1

k!
(−1)kΓ(1/2 + k)

Γ(1/2)

1

λk

Z ∞

0

e−ρρkdx

=
e−λ

2λ

∞X
k=0

Γ(1/2 + k)

Γ(1/2)
(−1)k 1

λk

(c) We consider only

I(λ) =

Z −1

−2
(sinx)e−λx

2

dx

first let s = x+ 1, to obtain

I(λ) =

Z 0

−1
sin(s− 1)e−λ[s2−2s+1]ds ≈ e−λ

Z 0

−∞
sin(s− 1)e−λ[s2−2s]ds

then we further let ρ = −2λs, to obtain

I(λ) ≈ e−λ
Z ∞

0

sin(1 + (
ρ

2λ
))e−ρe−ρ

2/4λ dρ

2λ

Then, expanding

sin(1 + (
ρ

2λ
)) = sin 1 +

1

1!
cos 1(

ρ

2λ
)− 1

2!
sin 1(

ρ

2λ
)2 + ...

and

e−ρ
2/4λ =

∞X
k=0

(
−ρ2
4λ
)k

and plugging those in, one may obtain the entire asymptotic series of the given
integral.
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(d) We first let s = x+ π
2
, as the main contribution comes from x = −π

2
.This gives

I(λ) ≈
Z 3π

2

−π
2

e−λ cos sds ≈
Z π

2

−π
2

e−λ cos sds = 2
Z π

2

0

e−λ cos sds

As a second step, we let ρ = −λ(cos s− 1), to obtain

I(λ) ≈ 2eλ
Z 1

0

e−ρ(
ρ

λ
)−1/2(2− ρ

λ
)−1/2dρ ≈ eλ

(2λ)1/2

Z 1

0

e−ρρ−1/2(1− ρ

2λ
)−1/2dρ

Changing illegitimately, the order of integration and summation, we obtain

I(λ) ≈
√
2
eλ

λ1/2

∞X
k=0

1

k!
(
1

2λ
)k
Γ(1/2 + k)

Γ(1/2)

Z 1

0

dρe−ρρk−1/2

The asymptotic series is obtained by replacing the upper limit of the integral by
∞, and it is

√
2π

eλ

λ1/2

∞X
k=0

(
1

2λ
)k
Γ2(1/2 + k)

k!Γ2(1/2)

(e) Letting ρ = λx, we get

I(λ) =
1

λ

Z ∞

0

e−ρe−(
ρ
λ
)2dρ

=
1

λ

Z ∞

0

e−ρ
∞X
k=0

1

k!
(−ρ

λ
)2kdρ

and so the asymptotic series is

1

λ

∞X
k=0

1

k!
(−1

λ
)2k
Z ∞

0

dρe−ρρ2k =
1

λ

∞X
k=0

(2k)!

k!
(−1

λ
)2k

(f) We first let s = x3 − λ3, to obtain

I(λ) = eλ
3

Z 0

−λ
es
1

3
(s+ λ3)−2/3ds

=
eλ

3

3λ2

Z 0

−λ
es(1 +

s

λ3
)−2/3ds

=
eλ

3

3λ2

Z 0

−λ
es

∞X
k=0

1

k!
(
s

λ3
)k(−1)kΓ(2/3 + k)

Γ(2/3)
ds

Therefore the asymptotic series is

eλ
3

3λ2

∞X
k=0

1

k!

Γ(2/3 + k)

Γ(2/3)

1

λ3k
(−1)k

Z 0

−∞
skesds

=
eλ

3

3λ2

∞X
k=0

Γ(2/3 + k)

Γ(2/3)

1

λ3k
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(g) We let s = λx, to obtain

I(λ) =
1

λ

Z ∞

0

e−se−s
5/λ4ds

=
1

λ

Z ∞

0

e−s
∞X
k=0

1

k!
(−1)k s

5k

λ4k
ds

Therefore the asymptotic series is

1

λ

∞X
k=0

1

λ4k
1

k!
(−1)k

Z ∞

0

e−ss5kds =
1

λ

∞X
k=0

(5k)!

k!
(−1)k 1

λ4k
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