18.305 Fall 2004/05

Solutions to Assignment 4: The Laplace method Provided by Mustafa Sabri Kilic

1. Find the leading term for each of the integrals below for $\lambda \gg 1$.
(a) $\int_{-1}^{4} e^{-\lambda x^{3}}\left(1+x^{4}\right) d x$
(b) $\int_{1}^{\infty} \sqrt{x-1} e^{-\lambda \cosh x} d x$
(c) $\int_{0}^{2} e^{\lambda x(1-x)} d x$
2. Find the leading term for each of the integrals below $\lambda \gg 1$.
(a) $\int_{-1}^{1} e^{-\lambda x^{3}} d x$
(b) $\int_{1}^{\infty} e^{-\lambda x^{2}} d x$
(c) $\int_{-2}^{1}(\sin x) e^{-\lambda x^{2}} d x$
(d) $\int_{-\pi}^{\pi} e^{-\lambda \sin x} d x$
(e) $\int_{0}^{\infty} e^{-\lambda x} e^{-x^{2}} d x$
(f) $\int_{0}^{\lambda} e^{x^{3}} d x$
(g) $\int_{0}^{\infty} e^{-\lambda\left(x+x^{5}\right)} d x$
3. Find the entire asymptotic series for each of the integrals in problem 2.

Solutions:

In the following, we assume the given integrals to be in the form

$$
I(\lambda)=\int_{a}^{b} h(x) e^{-\lambda v(x)} d x
$$

1. (a) $v(x)=x^{3}$, which has a minimum at the lower end point -1 . Since $v(x)$ is monotonically increasing in $[-1,1]$, we can use the formula

$$
\begin{equation*}
I(\lambda) \approx \frac{e^{-\lambda v(a)} h(a)}{\lambda v^{\prime}(a)} \tag{1}
\end{equation*}
$$

to obtain the leading term as

$$
I(\lambda) \approx \frac{2 e^{\lambda}}{3 \lambda}
$$

(b) The integral can be written as

$$
\begin{aligned}
I(\lambda) & =\int_{0}^{\infty} t^{1 / 2} e^{-\lambda \cosh (t+1)} d t \\
& =\int_{0}^{\infty} t^{1 / 2} e^{-\lambda[\cosh 1+t \sinh 1+. .]} d t \\
& \approx e^{-\lambda \cosh 1} \int_{0}^{\infty} t^{1 / 2} e^{-\lambda t \sinh 1} d t \\
& =e^{-\lambda \cosh 1} \int_{0}^{\infty}\left(\frac{1}{\lambda \sinh 1}\right)^{3 / 2} s^{1 / 2} e^{-s} d s \\
& =\frac{e^{-\lambda \cosh 1}}{(\lambda \sinh 1)^{3 / 2}} \Gamma(3 / 2)=\frac{e^{-\lambda \cosh 1}}{(\lambda \sinh 1)^{3 / 2}} \frac{\sqrt{\pi}}{2}
\end{aligned}
$$

(c) $v(x)=-x(1-x)$ takes its minimum at $x=1 / 2$, which is an interior point. As $v^{\prime \prime}(1 / 2) \neq 0$, we can use the formula

$$
\begin{equation*}
I(\lambda) \approx \sqrt{\frac{2 \pi}{\lambda\left|v^{\prime \prime}\left(x_{0}\right)\right|}} e^{-\lambda v\left(x_{0}\right)} h\left(x_{0}\right) \tag{2}
\end{equation*}
$$

to obtain the leading term

$$
I(\lambda) \approx \sqrt{\frac{\pi}{\lambda}} e^{\lambda / 4}
$$

2. (a) $v(x)=x^{3}$, which takes its minimum at $x=-1$. So, by using (1), we find

$$
I(\lambda) \approx \frac{e^{\lambda}}{3 \lambda}
$$

(b) $v(x)=x^{2}$, takes its minimum at $x=1$. Therefore, using (1), we find

$$
I(\lambda) \approx \frac{e^{-\lambda}}{2 \lambda}
$$

(c)

$$
\int_{-2}^{1}(\sin x) e^{-\lambda x^{2}} d x=\int_{-2}^{-1}(\sin x) e^{-\lambda x^{2}} d x+\int_{-1}^{1}(\sin x) e^{-\lambda x^{2}} d x
$$

where the second integral is zero, because its integrand is odd. Therefore, we only consider the first integral. $v(x)=x^{2}$, which takes its minimum at $x=-1$ and is monotonically decreasing throughout $[-2,-1]$. Therefore, by using the formula

$$
\begin{equation*}
I(\lambda) \approx-\frac{e^{-\lambda v(b)} h(b)}{\lambda v^{\prime}(b)} \tag{3}
\end{equation*}
$$

to obtain the leading term as

$$
I(\lambda) \approx-\frac{e^{-\lambda}}{2 \lambda} \sin 1
$$

(d) $v(x)=\sin x$ takes its minimum at $x=-\frac{\pi}{2}$, an interior point. Therefore, the formula (2) gives the leading term

$$
\sqrt{\frac{2 \pi}{\lambda}} e^{\lambda}
$$

(e) $h(x)=e^{-x^{2}}$ and $v(x)=x$, which takes its minimum at $x=0$ and is monotonic throughout the domain of integration. Therefore, the relevant formula is (3), which gives

$$
I(\lambda) \approx \frac{1}{\lambda}
$$

(f) Since the main contribution comes from $x=\lambda$ part, we can replace the integral by

$$
\begin{aligned}
I(\lambda) & =\int_{1}^{\lambda} e^{x^{3}} d x \\
& =\int_{1}^{\lambda} \frac{1}{3 x^{2}} 3 x^{2} e^{x^{3}} d x=\left.\frac{1}{3 x^{2}} e^{x^{3}}\right|_{1} ^{\lambda}+\int_{1}^{\lambda} \frac{2}{3 x^{3}} e^{x^{3}} d x
\end{aligned}
$$

which implies the leading term

$$
\frac{1}{3 \lambda^{2}} e^{\lambda^{3}}
$$

(g) $v(x)=x+x^{5}$, which takes on its minimum at $x=0$, therefore by using the formula (3), we obtain

$$
\frac{1}{\lambda}
$$

3. (a) We first let $s=x^{3}+1$, then the integral becomes

$$
I(\lambda)=e^{\lambda} \int_{0}^{2} e^{-\lambda s} \frac{1}{3}(1-s)^{2 / 3} d x
$$

where now the contribution comes from $s=0$. So we can change the upper limit to ∞. We further let $\rho=\lambda s$, to obtain

$$
I(\lambda)=\frac{e^{\lambda}}{3 \lambda} \int_{0}^{\infty} e^{-\rho}\left(-\frac{\rho}{\lambda}+1\right)^{2 / 3} d x
$$

The idea behind all those transformations is to have the leading term $\frac{e^{\lambda}}{3 \lambda}$ outside the integral, as above. Now we expand, and get
$I(\lambda)=\frac{e^{\lambda}}{3 \lambda} \int_{0}^{\infty} e^{-\rho} \sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k!} \frac{\Gamma(2 / 3)}{\Gamma(2 / 3-k)}\left(\frac{\rho}{\lambda}\right)^{k} d x=\frac{e^{\lambda}}{3 \lambda} \int_{0}^{\infty} e^{-\rho} \sum_{k=0}^{\infty} \frac{1}{k!} \frac{\Gamma(2 / 3+k)}{\Gamma(2 / 3)}\left(\frac{\rho}{\lambda}\right)^{k} d x$
We illegitimately change the order of integration and summation, to obtain the asymptotic series

$$
\begin{aligned}
I(\lambda) & =\frac{e^{\lambda}}{3 \lambda} \sum_{k=0}^{\infty} \frac{1}{k!} \frac{\Gamma(2 / 3+k)}{\Gamma(2 / 3)} \frac{1}{\lambda^{k}} \int_{0}^{\infty} e^{-\rho} \rho^{k} d x \\
& =\frac{e^{\lambda}}{3 \lambda} \sum_{k=0}^{\infty} \frac{\Gamma(2 / 3+k)}{\Gamma(2 / 3)} \frac{1}{\lambda^{k}}
\end{aligned}
$$

(b) We first let $s=x^{2}-1$, then the integral becomes

$$
I(\lambda)=e^{-\lambda} \int_{0}^{2} e^{-\lambda s} \frac{1}{2}(s+1)^{-1 / 2} d s
$$

where now the contribution comes from $s=0$. So we can change the upper limit to ∞. We further let $\rho=\lambda s$, to obtain

$$
I(\lambda)=\frac{e^{-\lambda}}{2 \lambda} \int_{0}^{\infty} e^{-\rho}\left(1+\frac{\rho}{\lambda}\right)^{-1 / 2} d x
$$

The idea behind all those transformations is to have the leading term $\frac{e^{\lambda}}{2 \lambda}$ outside the integral, as above. Now we expand, and get

$$
I(\lambda)=\frac{e^{-\lambda}}{2 \lambda} \int_{0}^{\infty} e^{-\rho} \sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} \frac{\Gamma(1 / 2+k)}{\Gamma(1 / 2)}\left(\frac{\rho}{\lambda}\right)^{k} d x
$$

We illegitimately change the order of integration and summation, to obtain the asymptotic series

$$
\begin{aligned}
I(\lambda) & =\frac{e^{-\lambda}}{2 \lambda} \sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} \frac{\Gamma(1 / 2+k)}{\Gamma(1 / 2)} \frac{1}{\lambda^{k}} \int_{0}^{\infty} e^{-\rho} \rho^{k} d x \\
& =\frac{e^{-\lambda}}{2 \lambda} \sum_{k=0}^{\infty} \frac{\Gamma(1 / 2+k)}{\Gamma(1 / 2)}(-1)^{k} \frac{1}{\lambda^{k}}
\end{aligned}
$$

(c) We consider only

$$
I(\lambda)=\int_{-2}^{-1}(\sin x) e^{-\lambda x^{2}} d x
$$

first let $s=x+1$, to obtain

$$
I(\lambda)=\int_{-1}^{0} \sin (s-1) e^{-\lambda\left[s^{2}-2 s+1\right]} d s \approx e^{-\lambda} \int_{-\infty}^{0} \sin (s-1) e^{-\lambda\left[s^{2}-2 s\right]} d s
$$

then we further let $\rho=-2 \lambda s$, to obtain

$$
I(\lambda) \approx e^{-\lambda} \int_{0}^{\infty} \sin \left(1+\left(\frac{\rho}{2 \lambda}\right)\right) e^{-\rho} e^{-\rho^{2} / 4 \lambda} \frac{d \rho}{2 \lambda}
$$

Then, expanding

$$
\sin \left(1+\left(\frac{\rho}{2 \lambda}\right)\right)=\sin 1+\frac{1}{1!} \cos 1\left(\frac{\rho}{2 \lambda}\right)-\frac{1}{2!} \sin 1\left(\frac{\rho}{2 \lambda}\right)^{2}+\ldots
$$

and

$$
e^{-\rho^{2} / 4 \lambda}=\sum_{k=0}^{\infty}\left(\frac{-\rho^{2}}{4 \lambda}\right)^{k}
$$

and plugging those in, one may obtain the entire asymptotic series of the given integral.
(d) We first let $s=x+\frac{\pi}{2}$, as the main contribution comes from $x=-\frac{\pi}{2}$. This gives

$$
I(\lambda) \approx \int_{-\frac{\pi}{2}}^{\frac{3 \pi}{2}} e^{-\lambda \cos s} d s \approx \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-\lambda \cos s} d s=2 \int_{0}^{\frac{\pi}{2}} e^{-\lambda \cos s} d s
$$

As a second step, we let $\rho=-\lambda(\cos s-1)$, to obtain

$$
I(\lambda) \approx 2 e^{\lambda} \int_{0}^{1} e^{-\rho}\left(\frac{\rho}{\lambda}\right)^{-1 / 2}\left(2-\frac{\rho}{\lambda}\right)^{-1 / 2} d \rho \approx \frac{e^{\lambda}}{(2 \lambda)^{1 / 2}} \int_{0}^{1} e^{-\rho} \rho^{-1 / 2}\left(1-\frac{\rho}{2 \lambda}\right)^{-1 / 2} d \rho
$$

Changing illegitimately, the order of integration and summation, we obtain

$$
I(\lambda) \approx \sqrt{2} \frac{e^{\lambda}}{\lambda^{1 / 2}} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{1}{2 \lambda}\right)^{k} \frac{\Gamma(1 / 2+k)}{\Gamma(1 / 2)} \int_{0}^{1} d \rho e^{-\rho} \rho^{k-1 / 2}
$$

The asymptotic series is obtained by replacing the upper limit of the integral by ∞, and it is

$$
\sqrt{2 \pi} \frac{e^{\lambda}}{\lambda^{1 / 2}} \sum_{k=0}^{\infty}\left(\frac{1}{2 \lambda}\right)^{k} \frac{\Gamma^{2}(1 / 2+k)}{k!\Gamma^{2}(1 / 2)}
$$

(e) Letting $\rho=\lambda x$, we get

$$
\begin{aligned}
I(\lambda) & =\frac{1}{\lambda} \int_{0}^{\infty} e^{-\rho} e^{-\left(\frac{\rho}{\lambda}\right)^{2}} d \rho \\
& =\frac{1}{\lambda} \int_{0}^{\infty} e^{-\rho} \sum_{k=0}^{\infty} \frac{1}{k!}\left(-\frac{\rho}{\lambda}\right)^{2 k} d \rho
\end{aligned}
$$

and so the asymptotic series is

$$
\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{k!}\left(-\frac{1}{\lambda}\right)^{2 k} \int_{0}^{\infty} d \rho e^{-\rho} \rho^{2 k}=\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{(2 k)!}{k!}\left(-\frac{1}{\lambda}\right)^{2 k}
$$

(f) We first let $s=x^{3}-\lambda^{3}$, to obtain

$$
\begin{aligned}
I(\lambda) & =e^{\lambda^{3}} \int_{-\lambda}^{0} e^{s} \frac{1}{3}\left(s+\lambda^{3}\right)^{-2 / 3} d s \\
& =\frac{e^{\lambda^{3}}}{3 \lambda^{2}} \int_{-\lambda}^{0} e^{s}\left(1+\frac{s}{\lambda^{3}}\right)^{-2 / 3} d s \\
& =\frac{e^{\lambda^{3}}}{3 \lambda^{2}} \int_{-\lambda}^{0} e^{s} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{s}{\lambda^{3}}\right)^{k}(-1)^{k} \frac{\Gamma(2 / 3+k)}{\Gamma(2 / 3)} d s
\end{aligned}
$$

Therefore the asymptotic series is

$$
\begin{aligned}
& \frac{e^{\lambda^{3}}}{3 \lambda^{2}} \sum_{k=0}^{\infty} \frac{1}{k!} \frac{\Gamma(2 / 3+k)}{\Gamma(2 / 3)} \frac{1}{\lambda^{3 k}}(-1)^{k} \int_{-\infty}^{0} s^{k} e^{s} d s \\
= & \frac{e^{\lambda^{3}}}{3 \lambda^{2}} \sum_{k=0}^{\infty} \frac{\Gamma(2 / 3+k)}{\Gamma(2 / 3)} \frac{1}{\lambda^{3 k}}
\end{aligned}
$$

(g) We let $s=\lambda x$, to obtain

$$
\begin{aligned}
I(\lambda) & =\frac{1}{\lambda} \int_{0}^{\infty} e^{-s} e^{-s^{5} / \lambda^{4}} d s \\
& =\frac{1}{\lambda} \int_{0}^{\infty} e^{-s} \sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} \frac{s^{5 k}}{\lambda^{4 k}} d s
\end{aligned}
$$

Therefore the asymptotic series is

$$
\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{\lambda^{4 k}} \frac{1}{k!}(-1)^{k} \int_{0}^{\infty} e^{-s} s^{5 k} d s=\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{(5 k)!}{k!}(-1)^{k} \frac{1}{\lambda^{4 k}}
$$

