Assignment 1: Series Solutions to ODEs

Revised and extended by M.S.Kilic using last year's solutions by P.Fok

1. Problem 1.(5x5+5pts) Find and classify the singular points (including ∞) for the following ODE:
(a) $x y^{\prime \prime}+(c-x) y^{\prime}-a y=0$ (confluent hypergeometric equation)
(b) $x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0$. (hypergeometric equation)
(c) $y^{\prime \prime}-\left(x^{4}-\frac{3}{16} x^{-2}\right) y=0$.
(d) $y^{\prime \prime}+\left(x^{2}+\frac{3}{16} x^{-2}\right) y=0$.
(e) $y^{\prime \prime}+\left(\nu+\frac{1}{2}-\frac{1}{4} x^{2}\right) y=0, \nu$ a constant. (parabolic cylinder equation)

The recurrence formula for the last equation involves three different a_{n}. Find a change of the dependable variable so that the recurrence formula for the transformed equation involves only two different a_{n}.

We recall that, in order to find the behaviour of the solution at very large values of x, it is convenient to let $t=\frac{1}{x}$, in which case we have

$$
\begin{aligned}
\frac{d}{d x} & =\frac{d}{d\left(\frac{1}{t}\right)}=-t^{2} \frac{d}{d t} \\
\frac{d^{2}}{d x^{2}} & =t^{2} \frac{d}{d t}\left(t^{2} \frac{d}{d t}\right)=t^{4} \frac{d^{2}}{d t^{2}}+2 t^{3} \frac{d}{d t}
\end{aligned}
$$

Thus a second order differential equation of the form

$$
y^{\prime \prime}+C(x) y^{\prime}+D(x) y=0
$$

transforms into

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+\frac{2 t-C\left(\frac{1}{t}\right)}{t^{2}} \frac{d y}{d t}+\frac{D\left(\frac{1}{t}\right)}{t^{4}} y=0 \tag{1}
\end{equation*}
$$

Solution:

(a) (confluent hypergeometric equation) First we put the equation into the form

$$
y^{\prime \prime}+\left(\frac{c}{x}-1\right) y^{\prime}-\frac{a}{x} y=0
$$

which is the right form the behaviour of the points.
The point $x=0$ is not an ordinary point since the function $\left(\frac{c}{x}-1\right)$ is not analytic at $x=0$ (in case $c \neq 0$).Furthermore, since $x\left(\frac{c}{x}-1\right)$ and $x^{2}\left(-\frac{a}{x}\right)$ are both analytic, $x=0$ is a regular singular point. $x=\infty$. Using (1), our equation transforms into

$$
\frac{d^{2} y}{d t^{2}}+\frac{2 t-(c t-1)}{t^{2}} \frac{d y}{d t}-\frac{a t}{t^{4}} y=0
$$

and hence $x=\infty$ is an irregular singular point of rank 1 .
(b) (hypergeometric equation)

$$
\Rightarrow \quad \begin{aligned}
& x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0 \\
& \\
&
\end{aligned} y^{\prime \prime}+\frac{[c-(a+b+1) x]}{x(1-x)} y^{\prime}-\frac{a b}{x(1-x)} y=0
$$

$x=0$ and $x=1$ are regular singular points except some special values of the parameters a, b and c. For $x=\infty$, we use (1) to obtain

$$
\frac{d^{2} y}{d t^{2}}+\frac{(2-c) t+(a+b-1)}{(t-1) t} \frac{d y}{d t}-\frac{a b}{t^{2}(t-1)} y=0
$$

Hence, $x=\infty$ is a regular singular point except some special values of the parameters a and b.
(c) $y^{\prime \prime}-\left(x^{4}-\frac{3}{16} x^{-2}\right) y=0$.

Clearly, $x=0$ is a regular singular point. With $t=\frac{1}{x}$, we have

$$
\frac{d^{2} y}{d t^{2}}+\frac{2}{t} \frac{d y}{d t}-\frac{\left(t^{-4}-\frac{3}{16} t^{2}\right)}{t^{4}} y=0
$$

Therefore $x=\infty$ is an irregular singular point of rank 3. c. $y^{\prime \prime}-\left(x^{4}-\frac{3}{16} x^{-2}\right) y=0$.
(d) $y^{\prime \prime}+\left(x^{2}+\frac{3}{16} x^{-2}\right) y=0$.

Clearly, $x=0$ is a regular singular point. With $t=\frac{1}{x}$, we have

$$
\frac{d^{2} y}{d t^{2}}+\frac{2}{t} \frac{d y}{d t}+\frac{\left(t^{-2}+\frac{3}{16} t^{2}\right)}{t^{4}} y=0
$$

Therefore $x=\infty$ is an irregular singular point of rank 2 .
(e) $y^{\prime \prime}+\left(\nu+\frac{1}{2}-\frac{1}{4} x^{2}\right) y=0$.

Since the function multiplying y is analytic everywhere, all the points except possibly $x=\infty$ are ordinary points.
For $x=\infty$, using (1), we obtain the transformed equation to be

$$
\frac{d^{2} y}{d t^{2}}+\frac{2}{t} \frac{d y}{d t}+\left(\frac{\left(\nu+\frac{1}{2}\right) t^{2}-\frac{1}{4}}{t^{6}}\right) y=0
$$

where $t=\frac{1}{x}$. Hence we see that $x=\infty$ is an irregular singular point of rank 2 .
For the last part of the question, we observe that the original form of the equation has "operators of three different orders":

* D^{2} : order -2
* $\left(\nu+\frac{1}{2}\right)$: order 0
* $-\frac{1}{4} x^{2}$: order +2

This will lead to three different types of a_{n} terms in the recurrence formula. Indeed, if we let

$$
y=\sum a_{n} x^{n}
$$

in the original parabolic cylinder equation, we arrive at the recurrence formula

$$
a_{n} n(n-1)+\left(\nu+\frac{1}{2}\right) a_{n-2}-\frac{1}{4} a_{n-4}=0
$$

from which it is hard, if not impossible, to obtain an explicit formula for a_{n} 's. We are asked to make a change of the dependable variable in order to get away form this problem. We tentatively let

$$
y=u Y
$$

where u is a function of x. Then

$$
\left[D^{2}+\left(\nu+\frac{1}{2}-\frac{1}{4} x^{2}\right)\right] u Y=u\left[\left(D+\frac{u^{\prime}}{u}\right)^{2}+\left(\nu+\frac{1}{2}-\frac{1}{4} x^{2}\right)\right] Y=0
$$

Hence

$$
\left[\left(D+\frac{u^{\prime}}{u}\right)^{2}+\left(\nu+\frac{1}{2}-\frac{1}{4} x^{2}\right)\right] Y=0
$$

We look more closely at

$$
\begin{equation*}
\left(D+\frac{u^{\prime}}{u}\right)^{2}+\nu+\frac{1}{2}-\frac{1}{4} x^{2}=D^{2}+\frac{u^{\prime}}{u} D+D \frac{u^{\prime}}{u}+\left(\frac{u^{\prime}}{u}\right)^{2}+\nu+\frac{1}{2}-\frac{1}{4} x^{2} \tag{2}
\end{equation*}
$$

Here we shall either eliminate the order -2 term which is $-\frac{1}{4} x^{2}$, or all terms with order 0 . The former seems easier, if we let

$$
\left(\frac{u^{\prime}}{u}\right)^{2}-\frac{1}{4} x^{2}=0
$$

then a solution to this will be

$$
\frac{u^{\prime}}{u}=-\frac{1}{2} x \Rightarrow u=e^{-\frac{1}{4} x^{2}}
$$

Putting this into (2), we obtain

$$
\left(D^{2}+x D+\nu\right) Y=0
$$

as our transformed differential equation. This formulation will not have the problems that the older had, as we have only operators of two different orders, namely D^{2} with order -2 , and $(x D+\nu)$ with order 0 .
Problem 2(7x5pts):Find the Maclaurin series solutions for the equations in problem 1. In what region is each of the series convergent?
(a) $x y^{\prime \prime}+(c-x) y^{\prime}-a y=0$ (Confluent Hypergeometric Equation)

Since we showed in problem 1 that $x=0$ is a regular singular point, we seek a solution in the form of a Frobenius series:

$$
y(x)=\sum_{n=-\infty}^{\infty} a_{n} x^{n+s} ; a_{n}=0 \text { if } n<0
$$

where s is some constant to be determined later. However, since coefficient of y is not singular, one solution can still be obtained by expanding Taylor Series. Because, the indicial equation, which can be obtained by putting $y=x^{s}$, and considering only the lowest order operators, will have the root $s=0$.
After this remark, we proceed as we should, by the Frobenius Series:

$$
\begin{equation*}
y^{\prime}=\sum_{n=-\infty}^{\infty}(n+s) a_{n} x^{n+s-1}, y^{\prime \prime}=\sum_{n=-\infty}^{\infty}(n+s)(n+s-1) a_{n} x^{n+s-2} \tag{3}
\end{equation*}
$$

Substituting this series into the original equation, we obtain

$$
\sum_{n=-\infty}^{\infty}(n+s)(n+s-1) a_{n} x^{n+s-2}+\sum_{n=-\infty}^{\infty} c(n+s) a_{n} x^{n+s-1}-\sum_{n=-\infty}^{\infty}[(n+s)+a] a_{n} x^{n+s}=0
$$

Relabeling indices,

$$
\sum_{n=-\infty}^{\infty}\left[(n+1+s)(n+s) a_{n+1}+[c(n+1+s)-(n+s)-a] a_{n}\right] x^{n+s}=0
$$

And the recurrence relation is

$$
(n+s+1)(n+s+c) a_{n+1}-(n+s+a) a_{n}=0
$$

Setting $n=-1$ yields $\left(a_{-1}=0, a_{0} \neq 0\right)$ the indicial equation

$$
s(s-1+c)=0
$$

Therefore s can take two values, either $s=0$ or $s=1-c$. We'll treat each case separately: For $s=0$,

$$
a_{n+1}=\frac{n+a}{(n+1)(n+c)} a_{n}
$$

where c cannot be a negative integer, or zero. Then,

$$
\begin{aligned}
a_{n} & =\frac{n-1+a}{n(n-1+c)} a_{n-1} \\
& =\frac{(n-1+a)(n-2+a)(1+a)}{n!(n-1+c)(n-2+c) \ldots(1+c) c} a_{0} \\
& =\frac{\Gamma(n+a) \Gamma(c)}{\Gamma(a) \Gamma(n+1) \Gamma(n+c)} a_{0}
\end{aligned}
$$

Therefore the solution corresponding to $s=0$ must be proportional to

$$
\mathrm{y}_{1}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(n+c)} \mathrm{x}^{n}
$$

For $s=1-c$,

$$
a_{n+1}=\frac{n+1-c+a}{(n+2-c)(n+1)} a_{n}
$$

or

$$
a_{n}=\frac{n-c+a}{(n+1-c) n)} a_{n-1}
$$

where $c \neq 2,3,4, \ldots$ Then we find

$$
a_{n}=\frac{\Gamma(n+1+a-c) \Gamma(2-c)}{\Gamma(1+a-c) \Gamma(n+2-c)} a_{0}
$$

and the second solution is proportional to

$$
\mathrm{y}_{2}(\mathrm{x})=\mathrm{x}^{1-c} \sum_{n=0}^{\infty} \frac{\Gamma(n+1+a-c)}{n!\Gamma(n+2-c)} \mathrm{x}^{n}
$$

This will be independent from $y_{1}(x)$ provided $c \neq 1$. The general solution of the confluent hypergeometric equation will be a linear combination of $y_{1}(x)$ and $y_{2}(x)$.
As can be seen by applying the ratio test, both series are convergent for $|x|<\infty$.
(b) $x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0$. (hypergeometric equation)
$x=0$ is a regular singular point, and so the solution is in the form of a Frobenius series

$$
y(x)=\sum_{n=-\infty}^{\infty} a_{n} x^{n+s} ; a_{n}=0 \text { if } n<0
$$

and y^{\prime} and $y^{\prime \prime}$ are the same as before.Also same remarks apply as in (a). Substituting, we obtain

$$
\begin{aligned}
& 0=\sum_{n=-\infty}^{\infty}(n+s)(n+s-1) a_{n} x^{n+s-1}-\sum_{n=-\infty}^{\infty}(n+s)(n+s-1) a_{n} x^{n+s} \\
& +\sum_{n=-\infty}^{\infty} c(n+s) a_{n} x^{n+s-1}-\sum_{n=-\infty}^{\infty}[(a+b+1)(n+s)+a b] a_{n} x^{n+s}
\end{aligned}
$$

Relabeling indices,

$$
\sum_{n=-\infty}^{\infty}\left[(n+1+s)(n+s+c) a_{n+1}-[(n+s)(n+s+a+b)+a b] a_{n}\right] x^{n+s}=0
$$

By equating each term is zero, and factorizing the coefficient of a_{n}

$$
(n+s)(n-1+s+c) a_{n+1}-(n-1+s+a)(n-1+s+b) a_{n-1}=0
$$

With $n=0$, the indicial equation is

$$
s(s+c-1)=0
$$

Therefore, either $s=0$ or $s=1-c$.
For $s=0$,

$$
\begin{aligned}
a_{n+1} & =\frac{(n-1+a)(n-1+b)}{n(n-1+c)} a_{n-1} \\
& =\frac{(n-1+a)(n-2+a) \ldots a(n-1+b)(n-2+b) \ldots b}{n!(n-1+c)(n-2+c) \ldots c} a_{0}
\end{aligned}
$$

This is all done assuming that c is not zero, or a negative integer. Then one of the solutions is found to be

$$
\mathrm{y}_{3}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{\Gamma(n+a) \Gamma(n+b)}{n!\Gamma(n+c)} \mathrm{x}^{n}
$$

For $s=1-c$,

$$
\begin{aligned}
a_{n} & =\frac{(n-c+a)(n-c+b)}{n(n+1-c)} a_{n-1} \\
& =\frac{(n-c+a)(n-1-c+a) \ldots(1-c+a)(n-c+b)(n-1-c+b) \ldots(1-c+b)}{n!(n+1-c)(n+c) \ldots(2-c)} a_{0} \\
& =\frac{\Gamma(n-c+a+1) \Gamma(n-c+b+1) \Gamma(2-c)}{n!\Gamma(1-c+a) \Gamma(1-c+b) \Gamma(n+2-c)} a_{0}
\end{aligned}
$$

Here we assumed that c is not positive integer. Then we find

$$
\mathrm{y}_{4}(\mathrm{x})=\mathrm{x}^{1-c} \sum_{n=0}^{\infty} \frac{\Gamma(n+a+1-c) \Gamma(n+b+1-c)}{n!\Gamma(n+2-c)} \mathrm{x}^{n}
$$

And the most general solution to the Hypergeometric Equation is a linear combination of $y_{3}(x)$ and $y_{4}(x)$, providing that $c \neq 0, \pm 1, \pm 2, \ldots$. The series are convergent for all $|x|<1$.
(c) $y^{\prime \prime}-\left(x^{4}-\frac{3}{16} x^{-2}\right) y=0$.

Since we know that $x=0$ is a regular singular point, we expand a Frobenius Series $y(x)=$ $\sum_{n=-\infty}^{\infty} a_{n} x^{n+s} ; a_{n}=0$ if $n<0$. Substituting $y^{\prime \prime}$ as given in (3) into the equation, we obtain

$$
\begin{gathered}
\sum_{n=-\infty}^{\infty} a_{n}(n+s)(n+s-1) x^{n+s-2}-\sum_{n=-\infty}^{\infty} a_{n} x^{n+s+4}+\sum_{n=-\infty}^{\infty} \frac{3}{16} a_{n} x^{n+s-2}=0 \\
\Rightarrow \quad \sum_{n=-\infty}^{\infty}\left\{a_{n}\left[(n+s)(n+s-1)+\frac{3}{16}\right]-a_{n-6}\right\} x^{n-2}=0
\end{gathered}
$$

Setting $n=0$ gives the indicial equation $\left(a_{0} \neq 0, a_{-6}=0\right)$

$$
s(s-1)+\frac{3}{16}=0
$$

which implies either $s=\frac{1}{4}$ or $s=\frac{3}{4}$.

For $s=\frac{1}{4}$, we have

$$
a_{n}\left[\left(n+\frac{1}{4}\right)\left(n-\frac{3}{4}\right)+\frac{3}{16}\right]=a_{n-6}
$$

i.e

$$
a_{n}=\frac{a_{n-6}}{n\left(n-\frac{1}{2}\right)}
$$

Then putting $n=6 m$, we obtain

$$
a_{6 m}=\frac{a_{6(m-1)}}{6^{2} m\left(m-\frac{1}{12}\right)}
$$

Therefore, we conclude

$$
a_{6 m}=\frac{\Gamma\left(\frac{11}{12}\right)}{6^{2 m} m!\Gamma\left(m+\frac{11}{12}\right)} a_{0}
$$

and the solution is proportional to

$$
\mathrm{y}_{5}(\mathrm{x})=\mathrm{x}^{\frac{1}{4}} \sum_{n=0}^{\infty} \frac{x^{6 n}}{6^{2 n} n!\Gamma\left(n+\frac{I I}{12}\right)}
$$

Clearly, the series is convergent for all $|x|<\infty$ (say, by ratio test).
For $s=\frac{3}{4}$, we have

$$
a_{n}\left[\left(n+\frac{3}{4}\right)\left(n-\frac{1}{4}\right)+\frac{3}{16}\right]=a_{n-6}
$$

i.e

$$
a_{n}=\frac{a_{n-6}}{n\left(n+\frac{1}{2}\right)}
$$

Then putting $n=6 m$, we obtain

$$
a_{6 m}=\frac{a_{6(m-1)}}{6^{2} m\left(m+\frac{1}{12}\right)}
$$

Therefore, we conclude

$$
a_{6 m}=\frac{\Gamma\left(\frac{13}{12}\right)}{6^{2 m} m!\Gamma\left(m+\frac{13}{12}\right)} a_{0}
$$

and the solution is proportional to

$$
\mathrm{y}_{6}(\mathrm{x})=\mathrm{x}^{\frac{3}{4}} \sum_{n=0}^{\infty} \frac{x^{6 n}}{6^{2 n} n!\Gamma\left(n+\frac{13}{12}\right)}
$$

Clearly, the series is convergent for all $|x|<\infty$ (say, by ratio test).
The general solution to the differential equation will then be a linear combination of those two solutions, namely $y_{5}(x)$ and $y_{6}(x)$, for $|x|<\infty$.
(d) $y^{\prime \prime}+\left(x^{2}+\frac{3}{16} x^{-2}\right) y=0$.

Since we know that $x=0$ is a regular singular point, we expand a Frobenius Series $y(x)=$ $\sum_{n=-\infty}^{\infty} a_{n} x^{n+s} ; a_{n}=0$ if $n<0$. Substituting $y^{\prime \prime}$ as given in (3) into the equation, we obtain

$$
\begin{gathered}
\sum_{n=-\infty}^{\infty} a_{n}(n+s)(n+s-1) x^{n+s-2}+\sum_{n=-\infty}^{\infty} a_{n} x^{n+s+2}+\sum_{n=-\infty}^{\infty} \frac{3}{16} a_{n} x^{n+s-2}=0 \\
\sum_{n=-\infty}^{\infty}\left\{a_{n}\left[(n+s)(n+s-1)+\frac{3}{16}\right]+a_{n-4}\right\} x^{n-2}=0
\end{gathered}
$$

Setting $n=0$ gives the indicial equation $\left(a_{0} \neq 0, a_{-4}=0\right)$

$$
s(s-1)+\frac{3}{16}=0
$$

which implies either $s=\frac{1}{4}$ or $s=\frac{3}{4}$.
For $s=\frac{1}{4}$, we have

$$
a_{n}\left[\left(n+\frac{1}{4}\right)\left(n-\frac{3}{4}\right)+\frac{3}{16}\right]=-a_{n-4}
$$

i.e

$$
a_{n}=-\frac{a_{n-4}}{n\left(n-\frac{1}{2}\right)}
$$

Then putting $n=4 m$, we obtain

$$
a_{4 m}=(-1)^{m} \frac{a_{4(m-1)}}{4^{2} m\left(m-\frac{1}{8}\right)}
$$

Therefore, we conclude

$$
a_{4 m}=(-1)^{m} \frac{\Gamma\left(\frac{7}{8}\right)}{4^{2 m} m!\Gamma\left(m+\frac{7}{8}\right)} a_{0}
$$

and the solution is proportional to

$$
\mathrm{y}_{7}(\mathrm{x})=\mathrm{x}^{\frac{1}{4}} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{4^{2 n} n!\Gamma\left(n+\frac{7}{8}\right)}
$$

Clearly, the series is convergent for all $|x|<\infty$ (say, by ratio test).
For $s=\frac{3}{4}$, we have

$$
a_{n}\left[\left(n+\frac{3}{4}\right)\left(n-\frac{1}{4}\right)+\frac{3}{16}\right]=-a_{n-4}
$$

i.e

$$
a_{n}=-\frac{a_{n-4}}{n\left(n+\frac{1}{2}\right)}
$$

Then putting $n=4 m$, we obtain

$$
a_{4 m}=(-1)^{m} \frac{a_{4(m-1)}}{4^{2} m\left(m+\frac{1}{8}\right)}
$$

Therefore, we conclude

$$
a_{4 m}=(-1)^{m} \frac{\Gamma\left(\frac{9}{8}\right)}{4^{2 m} m!\Gamma\left(m+\frac{9}{8}\right)} a_{0}
$$

and the solution is proportional to

$$
\mathrm{y}_{8}(\mathrm{x})=\mathrm{x}^{\frac{1}{4}} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{4^{2 n} n!\Gamma\left(n+\frac{9}{8}\right)}
$$

Clearly, the series is convergent for all $|x|<\infty$ (say, by ratio test).
The general solution of the differential equation then is a linear combination of the two solutions found above.
(e) $y^{\prime \prime}+\left(\nu+\frac{1}{2}-\frac{1}{4} x^{2}\right) y=0, \nu$ a constant. (parabolic cylinder equation)

We remember from problem(1.e) that our transformed equation was

$$
Y^{\prime \prime}-x Y+\nu Y=0
$$

where $y=e^{-\frac{1}{4} x^{2}} Y$. Since now $x=0$ is an ordinary point, we simply expand the Taylor Series $Y(x)=\sum_{n=-\infty}^{\infty} a_{n} x^{n}$. Then $Y^{\prime \prime}(x)=\sum_{n=-\infty}^{\infty} n(n-1) a_{n} x^{n-2}$. Substituting those into the equation, we obtain

$$
\sum_{n=-\infty}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=-\infty}^{\infty} n a_{n} x^{n}+\sum_{n=-\infty}^{\infty} \nu a_{n} x^{n}=0
$$

or

$$
\sum_{n=-\infty}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=-\infty}^{\infty}(n-\nu) a_{n} x^{n}=0
$$

which gives

$$
(n+2)(n+1) a_{n+2}-(n-\nu) a_{n}=0
$$

Then

$$
\begin{equation*}
a_{n}=\frac{(n-2-\nu)}{n(n-1)} a_{n-2} \tag{4}
\end{equation*}
$$

Letting $n=2 m$,

$$
a_{2 m}=\frac{2\left(m-1-\frac{\nu}{2}\right)}{2^{2} m\left(m-\frac{1}{2}\right)} a_{2(m-1)}
$$

Then

$$
a_{2 m}=\frac{2\left(m-1-\frac{\nu}{2}\right)}{2^{2} m\left(m-\frac{1}{2}\right)} a_{2(m-1)}
$$

Then

$$
a_{2 m}=\frac{\Gamma\left(m-\frac{\nu}{2}\right) \Gamma\left(\frac{1}{2}\right)}{2^{m} m!\Gamma\left(m+\frac{1}{2}\right) \Gamma\left(-\frac{\nu}{2}\right)} a_{0}
$$

Therefore one of the solutions is proportional to

$$
\mathrm{y}_{9}(\mathrm{x})=\mathrm{e}^{-\frac{1}{4} x^{2}} \sum_{n=0}^{\infty} \frac{\Gamma\left(n-\frac{\nu}{2}\right)}{2^{n} n!\Gamma\left(n+\frac{1}{2}\right)} \mathrm{x}^{2 n}
$$

The series is convergent for all $|x|<\infty$. To find the other solution, we let $n=2 m+1$ in (4), to obtain

$$
a_{2 m+1}=\frac{2 m-1-\nu}{2 m(2 m+1)} a_{2(m-1)+1}=\frac{\left(m-\frac{\nu+1}{2}\right)}{2 m\left(m+\frac{1}{2}\right)} a_{2(m-1)+1}
$$

Then

$$
a_{2 m+1}=\frac{\Gamma\left(m-\frac{\nu-1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{2^{m} m!\Gamma\left(m+\frac{3}{2}\right) \Gamma\left(-\frac{1+\nu}{2}\right)} a_{1}
$$

Therefore one of the solutions is proportional to

$$
\mathrm{y}_{10}(\mathrm{x})=\mathrm{e}^{-\frac{1}{4} x^{2}} \sum_{n=0}^{\infty} \frac{\Gamma\left(n-\frac{\nu-1}{2}\right)}{2^{n} n!\Gamma\left(n+\frac{3}{2}\right)} \mathrm{x}^{2 n+1}
$$

The series is convergent for all $|x|<\infty$.
The general solution can be written as a linear combination of $y_{9}(x)$ and $y_{10}(x)$.

Problem 3(25pts): Calculate the Quantity

$$
\lim _{p \rightarrow n} \frac{J_{p}(x)-\cos \pi p J_{-p}(x)}{\sin \pi p}
$$

From now on, let us call this quantity $Q_{n}(x)$. Since

$$
\begin{gathered}
J_{p}(x)=e^{p \log \left(\frac{x}{2}\right)} \sum_{m=0}^{\infty} \frac{(-1)^{m}(x / 2)^{2 m}}{m!\Gamma(m+p+1)} \\
\frac{\partial J_{p}(x)}{\partial p}=\log \left(\frac{x}{2}\right) J_{p}(x)-\left(\frac{x}{2}\right)^{p} \sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{x}{2}\right)^{2 m} \Gamma^{\prime}(m+p+1)}{m!\Gamma^{2}(m+p+1)}
\end{gathered}
$$

And of course

$$
\frac{\partial J_{-p}(x)}{\partial p}=-\log \left(\frac{x}{2}\right) J_{-p}(x)+\left(\frac{x}{2}\right)^{-p} \sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{x}{2}\right)^{2 m} \Gamma^{\prime}(m-p+1)}{m!\Gamma^{2}(m-p+1)}
$$

The numerator and denominator of $Q_{n}(x)$ both tend to zero as $p \rightarrow n$, so we must use L'Hopital's Rule to obtain the limit by differentiating the top and bottom with respect to p.

$$
Q_{n}(x)=\lim _{p \rightarrow n} \frac{\frac{\partial J_{p}(x)}{\partial p}-\left(-\pi \sin \pi p J_{-p}(x)+\cos \pi p \frac{\partial J_{-p}(x)}{\partial p}\right)}{\pi \cos \pi p}
$$

The middle term tends to zero in the limit, and since $\cos \pi p=(-1)^{p}$,

$$
(-1)^{n} Q_{n}(x)=\frac{1}{\pi}\left(\frac{\partial J_{n}(x)}{\partial n}-(-1)^{n} \frac{\partial J_{-n}(x)}{\partial n}\right)
$$

$$
\begin{align*}
& \therefore(-1)^{n} Q_{n}(x)= \frac{1}{\pi} \\
&\left(\log \left(\frac{x}{2}\right) J_{n}(x)+(-1)^{n} \log \left(\frac{x}{2}\right) J_{-n}(x)\right) \\
&-\frac{1}{\pi}\left(\frac{x}{2}\right)^{n} \sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{x}{2}\right)^{2 m} \Gamma^{\prime}(m+n+1)}{m!\Gamma^{2}(m+n+1)} \\
&-\frac{1}{\pi}(-1)^{n}\left(\frac{x}{2}\right)^{-n} \sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{x}{2}\right)^{2 m} \Gamma^{\prime}(m-n+1)}{m!\Gamma^{2}(m-n+1)} \\
& \therefore(-1)^{n} Q_{n}(x)=\frac{2}{\pi} \log \left(\frac{x}{2}\right) J_{n}(x)-\frac{\left(\frac{x}{2}\right)^{n}}{\pi} \sum_{m=0}^{\infty} \frac{\left(-\frac{1}{4} x^{2}\right)^{m} \Gamma^{\prime}(m+n+1)}{m!\Gamma^{2}(m+n+1)} \tag{5}\\
&-\frac{1}{\pi} \sum_{m=0}^{n-1} \frac{(-1)^{m+n}\left(\frac{x}{2}\right)^{2 m-n} \Gamma^{\prime}(m-n+1)}{m!\Gamma^{2}(m-n+1)} \\
&-\frac{1}{\pi} \sum_{m=n}^{\infty} \frac{(-1)^{m+n}\left(\frac{x}{2}\right)^{2 m-n} \Gamma^{\prime}(m-n+1)}{m!\Gamma^{2}(m-n+1)}
\end{align*}
$$

where I have used the fact that $J_{n}(x)=(-1)^{n} J_{n}(x)$ to obtain the first log term above. I have also split up the last infinite series into two parts - one involving a sum from zero to $n-1$, and the other from n to ∞. The reason for this is because for the third part of $(-1)^{n} Q_{n}(x)$ above, the arguments of the gamma functions are negative integers and require more analysis. We now consider the three sums separately. If we define $\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}(\psi$ is then the digamma function), then the first of the sums

$$
-\frac{\left(\frac{x}{2}\right)^{n}}{\pi} \sum_{m=0}^{\infty} \frac{\left(-\frac{1}{4} x^{2}\right)^{m} \Gamma^{\prime}(m+n+1)}{m!\Gamma^{2}(m+n+1)}=-\frac{\left(\frac{x}{2}\right)^{n}}{\pi} \sum_{m=0}^{\infty} \frac{\left(-\frac{1}{4} x^{2}\right)^{m} \psi(m+n+1)}{m!(m+n)!}
$$

The properties of the Digamma function $\psi(x)$ are not used anywhere in this question - if you're not comfortable with it, just assume it's a shorthand notation for $\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$.

The last sum in (5) can be simplified by relabelling the summing index. If we let $s=m-n$, then

$$
-\frac{1}{\pi} \sum_{m=n}^{\infty} \frac{(-1)^{m+n}\left(\frac{x}{2}\right)^{2 m-n} \Gamma^{\prime}(m-n+1)}{m!\Gamma^{2}(m-n+1)}=-\frac{\left(\frac{x}{2}\right)^{n}}{\pi} \sum_{s=0}^{\infty} \frac{\left(-\frac{1}{4} x^{2}\right)^{s} \psi(s+1)}{s!(n+s)!}
$$

We finally come to the third sum in (5):

$$
-\frac{1}{\pi} \sum_{m=0}^{n-1} \frac{(-1)^{m+n}\left(\frac{x}{2}\right)^{2 m-n} \Gamma^{\prime}(m-n+1)}{m!\Gamma^{2}(m-n+1)}
$$

Note that the arguments in the gamma functions are all negative integers. We have to be careful here, because $\Gamma(x)$ becomes infinite for negative integers x, and so $\Gamma^{\prime}(x)$ is certainly not well defined for negative integers either. If you remember, the ratio of the Gamma function's derivative to the function squared came originally from differentiating the reciprical of the function, when we calculated $\frac{\partial J_{-p}(x)}{\partial p}$. What we require then is

$$
\begin{equation*}
\left.\frac{d}{d x} \frac{1}{\Gamma(x)}\right|_{m-n+1} \tag{6}
\end{equation*}
$$

Using the "reflection formula" (should be given in Bender and Orszag) $\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}$, we have that

$$
\left.\frac{d}{d x} \frac{1}{\Gamma(x)}\right|_{m-n+1}=\left.\frac{d}{d x} \Gamma(1-x) \frac{\sin \pi x}{\pi}\right|_{m-n+1}
$$

which can be calculated in a straight-forward way. We find that

$$
-\frac{\Gamma^{\prime}(m-n+1)}{\Gamma^{2}(m-n+1)}=-\Gamma(n-m)(-1)^{n-m}
$$

Putting all four parts of $Q_{n}(x)$ together, we finally have

$$
\begin{aligned}
Q_{n}(x)(-1)^{n}= & \frac{2}{\pi} \log \left(\frac{x}{2}\right) J_{n}(x) \\
& -\frac{\left(\frac{x}{2}\right)^{n}}{\pi} \sum_{m=0}^{\infty} \frac{\left(-\frac{1}{4} x^{2}\right)^{m}}{m!(m+n)!}(\psi(m+n+1)+\psi(m+1)) \\
& -\frac{\left(\frac{x}{2}\right)^{-n}}{\pi} \sum_{m=0}^{n-1} \frac{\left(\frac{x^{2}}{4}\right)(n-m-1)!}{m!}
\end{aligned}
$$

The quantity $Q_{n}(x)(-1)^{n}$ is actually a Bessel function of the second kind, sometimes also called a Neumann function - denoted usually by $Y_{n}(x)$. It is a solution to Bessel's Equation, but is linearly independent to both $J_{n}(x)$ and $J_{-n}(x)$

Problem 4(10pts): Let $y_{1}(x)=(1+x)$ and $y_{2}(x)=x^{2}$ be the two independent solutions of equation $y^{\prime \prime}+c(x) y^{\prime}+d(x) y=0$. Find $c(x)$ and $\mathbf{d}(\mathbf{x})$ and show that both of them have a simple pole at $x=0$. What do you learn from this example.

Plugging in y_{1} and y_{2} in, we obtain

$$
\begin{aligned}
c(x)+(1+x) d(x) & =0 \\
2+2 x c(x)+x^{2} d(x) & =0
\end{aligned}
$$

Solving this set of equations, we find

$$
c(x)=-\frac{2(x+1)}{x(x+2)}, d(x)=\frac{2}{x(x+2)}
$$

which, obviously, have simple poles at $x=0$.
Therefore the differential equation in question has a (regular) singular point at $x=0$. Yet, it has two independent solutions which are analytic everywhere. The moral of this example is that, that a differential equation has singularity at a point does not guarantee that it will have singular solutions around that point.

