
18.305 Fall 2004/05
Assignment 1: Series Solutions to ODEs

Revised and extended by M.S.Kilic using last year’s solutions by P.Fok

1. Problem 1.(5x5+5pts) Find and classify the singular points (including ∞)
for the following ODE:

(a) xy00 + (c− x)y0 − ay = 0 (confluent hypergeometric equation)
(b) x(1− x)y00 + [c− (a+ b+ 1)x]y0 − aby = 0. (hypergeometric equation)
(c) y00 − (x4 − 3

16
x−2)y = 0.

(d) y00 +(x2 + 3
16
x−2)y = 0.

(e) y00 + (ν + 1
2
− 1

4
x2)y = 0, ν a constant. (parabolic cylinder equation)

The recurrence formula for the last equation involves three different an.Find a

change of the dependable variable so that the recurrence formula for the trans-
formed equation involves only two different an.

We recall that, in order to find the behaviour of the solution at very large values of x, it is
convenient to let t = 1

x
, in which case we have

d

dx
=

d

d(1
t
)
= −t2 d

dt

d2

dx2
= t2

d

dt
(t2
d

dt
) = t4

d2

dt2
+ 2t3

d

dt

Thus a second order differential equation of the form

y
00
+ C(x)y0 +D(x)y = 0

transforms into
d2y

dt2
+
2t− C(1

t
)

t2
dy

dt
+
D(1

t
)

t4
y = 0 (1)

Solution:

(a) (confluent hypergeometric equation) First we put the equation into the form

y00 + (
c

x
− 1)y0 − a

x
y = 0

which is the right form the behaviour of the points.

The point x = 0 is not an ordinary point since the function ( c
x
− 1) is not analytic at x = 0

(in case c 6= 0).Furthermore, since x( c
x
− 1) and x2(−a

x
) are both analytic, x = 0 is a regular

singular point.x =∞. Using (1), our equation transforms into
d2y

dt2
+
2t− (ct− 1)

t2
dy

dt
− at
t4
y = 0

and hence x =∞ is an irregular singular point of rank 1.
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(b) (hypergeometric equation)

x(1− x)y00 + [c− (a+ b+ 1)x]y0 − aby = 0
⇒

y00 +
[c− (a+ b+ 1)x]

x(1− x) y0 − ab

x(1− x)y = 0

x = 0 and x = 1 are regular singular points except some special values of the parameters
a, b and c. For x =∞, we use (1) to obtain

d2y

dt2
+
(2− c)t+ (a+ b− 1)

(t− 1)t
dy

dt
− ab

t2(t− 1)y = 0

Hence, x =∞ is a regular singular point except some special values of the parameters a and
b.

(c) y00 − (x4 − 3
16
x−2)y = 0.

Clearly, x = 0 is a regular singular point. With t = 1
x
, we have

d2y

dt2
+
2

t

dy

dt
− (t

−4 − 3
16
t2)

t4
y = 0

Therefore x =∞ is an irregular singular point of rank 3. c.y00 − (x4 − 3
16
x−2)y = 0.

(d) y00 + (x2 + 3
16
x−2)y = 0.

Clearly, x = 0 is a regular singular point. With t = 1
x
, we have

d2y

dt2
+
2

t

dy

dt
+
(t−2 + 3

16
t2)

t4
y = 0

Therefore x =∞ is an irregular singular point of rank 2.

(e) y00 + (ν + 1
2
− 1

4
x2)y = 0.

Since the function multiplying y is analytic everywhere, all the points except possibly x =∞
are ordinary points.
For x =∞, using (1), we obtain the transformed equation to be

d2y

dt2
+
2

t

dy

dt
+

µ
(ν + 1

2
)t2 − 1

4

t6

¶
y = 0

where t = 1
x
. Hence we see that x =∞ is an irregular singular point of rank 2.

For the last part of the question, we observe that the original form of the equation has
”operators of three different orders”:
* D2 : order -2
* (ν + 1

2
) : order 0
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* −1
4
x2 : order +2

This will lead to three different types of an terms in the recurrence formula. Indeed, if we
let

y =
X

anx
n

in the original parabolic cylinder equation, we arrive at the recurrence formula

ann(n− 1) + (ν + 1
2
)an−2 − 1

4
an−4 = 0

from which it is hard, if not impossible, to obtain an explicit formula for an’s. We are asked
to make a change of the dependable variable in order to get away form this problem. We
tentatively let

y = uY

where u is a function of x. Then

[D2 + (ν +
1

2
− 1
4
x2)]uY = u[(D +

u0

u
)2 + (ν +

1

2
− 1
4
x2)]Y = 0

Hence

[(D +
u0

u
)2 + (ν +

1

2
− 1
4
x2)]Y = 0

We look more closely at

(D +
u0

u
)2 + ν +

1

2
− 1
4
x2 = D2 +

u0

u
D +D

u0

u
+ (
u0

u
)2 + ν +

1

2
− 1
4
x2 (2)

Here we shall either eliminate the order -2 term which is −1
4
x2, or all terms with order 0.

The former seems easier, if we let

(
u0

u
)2 − 1

4
x2 = 0

then a solution to this will be

u0

u
= −1

2
x ⇒ u = e−

1
4
x2

Putting this into (2), we obtain

(D2 + xD + ν)Y = 0

as our transformed differential equation. This formulation will not have the problems that
the older had, as we have only operators of two different orders, namely D2 with order -2,
and (xD + ν) with order 0.
Problem 2(7x5pts):Find the Maclaurin series solutions for the equations in prob-
lem 1. In what region is each of the series convergent?

(a) xy00 + (c− x)y0 − ay = 0 (Confluent Hypergeometric Equation)
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Since we showed in problem 1 that x = 0 is a regular singular point, we seek a solution in
the form of a Frobenius series:

y(x) =
∞X

n=−∞
anx

n+s; an = 0 if n < 0

where s is some constant to be determined later. However, since coefficient of y is not
singular, one solution can still be obtained by expanding Taylor Series. Because, the indicial
equation, which can be obtained by putting y = xs, and considering only the lowest order
operators, will have the root s = 0.
After this remark, we proceed as we should, by the Frobenius Series:

y0 =
∞X

n=−∞
(n+ s)anx

n+s−1, y00 =
∞X

n=−∞
(n+ s)(n+ s− 1)anxn+s−2 (3)

Substituting this series into the original equation, we obtain

∞X
n=−∞

(n+ s)(n+ s− 1)anxn+s−2 +
∞X

n=−∞
c(n+ s)anx

n+s−1 −
∞X

n=−∞
[(n+ s) + a]anx

n+s = 0

Relabeling indices,

∞X
n=−∞

[(n+ 1 + s)(n+ s)an+1 + [c(n+ 1 + s)− (n+ s)− a]an]xn+s = 0

And the recurrence relation is

(n+ s+ 1)(n+ s+ c)an+1 − (n+ s+ a)an = 0
Setting n = −1 yields (a−1 = 0, a0 6= 0) the indicial equation

s(s− 1 + c) = 0
Therefore s can take two values, either s = 0 or s = 1− c. We’ll treat each case separately:
For s = 0,

an+1 =
n+ a

(n+ 1)(n+ c)
an

where c cannot be a negative integer, or zero. Then,

an =
n− 1 + a
n(n− 1 + c)an−1

=
(n− 1 + a)(n− 2 + a)(1 + a)

n!(n− 1 + c)(n− 2 + c)...(1 + c)ca0

=
Γ(n+ a)Γ(c)

Γ(a)Γ(n+ 1)Γ(n+ c)
a0

Therefore the solution corresponding to s = 0 must be proportional to

y1(x)=
P∞

n=0
Γ(n+a)
n!Γ(n+c)

xn
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For s = 1− c,
an+1 =

n+ 1− c+ a
(n+ 2− c)(n+ 1)an

or
an =

n− c+ a
(n+ 1− c)n)an−1

where c 6= 2, 3, 4, ... Then we find

an =
Γ(n+ 1 + a− c)Γ(2− c)
Γ(1 + a− c)Γ(n+ 2− c)a0

and the second solution is proportional to

y2(x)=x1−c
P∞

n=0
Γ(n+1+a−c)
n!Γ(n+2−c) x

n

This will be independent from y1(x) provided c 6= 1. The general solution of the confluent
hypergeometric equation will be a linear combination of y1(x) and y2(x).
As can be seen by applying the ratio test, both series are convergent for |x| <∞.

(b) x(1− x)y00 + [c− (a+ b+ 1)x]y0 − aby = 0. (hypergeometric equation)

x = 0 is a regular singular point, and so the solution is in the form of a Frobenius series

y(x) =
∞X

n=−∞
anx

n+s; an = 0 if n < 0

and y0 and y00 are the same as before.Also same remarks apply as in (a). Substituting, we
obtain

0 =
∞X

n=−∞
(n+ s)(n+ s− 1)anxn+s−1 −

∞X
n=−∞

(n+ s)(n+ s− 1)anxn+s

+
∞X

n=−∞
c(n+ s)anx

n+s−1 −
∞X

n=−∞
[(a+ b+ 1)(n+ s) + ab]anx

n+s

Relabeling indices,

∞X
n=−∞

[(n+ 1 + s)(n+ s+ c)an+1 − [(n+ s)(n+ s+ a+ b) + ab]an]xn+s = 0

By equating each term is zero, and factorizing the coefficient of an

(n+ s)(n− 1 + s+ c)an+1 − (n− 1 + s+ a)(n− 1 + s+ b)an−1 = 0

With n = 0, the indicial equation is

s(s+ c− 1) = 0
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Therefore, either s = 0 or s = 1− c.
For s = 0,

an+1 =
(n− 1 + a)(n− 1 + b)

n(n− 1 + c) an−1

=
(n− 1 + a)(n− 2 + a)...a(n− 1 + b)(n− 2 + b)...b

n!(n− 1 + c)(n− 2 + c)...c a0

This is all done assuming that c is not zero, or a negative integer. Then one of the solutions
is found to be

y3(x)=
P∞

n=0
Γ(n+a)Γ(n+b)
n!Γ(n+c)

xn

For s = 1− c,

an =
(n− c+ a)(n− c+ b)

n(n+ 1− c) an−1

=
(n− c+ a)(n− 1− c+ a)...(1− c+ a)(n− c+ b)(n− 1− c+ b)...(1− c+ b)

n!(n+ 1− c)(n+ c)...(2− c) a0

=
Γ(n− c+ a+ 1)Γ(n− c+ b+ 1)Γ(2− c)
n!Γ(1− c+ a)Γ(1− c+ b)Γ(n+ 2− c) a0

Here we assumed that c is not positive integer. Then we find

y4(x)=x1−c
P∞

n=0
Γ(n+a+1−c)Γ(n+b+1−c)

n!Γ(n+2−c) xn

And the most general solution to the Hypergeometric Equation is a linear combination of
y3(x) and y4(x), providing that c 6= 0,±1,±2, .... The series are convergent for all |x| < 1.

(c) y00 − (x4 − 3
16
x−2)y = 0.

Since we know that x = 0 is a regular singular point, we expand a Frobenius Series y(x) =P∞
n=−∞ anx

n+s; an = 0 if n < 0. Substituting y00 as given in (3) into the equation, we obtain

∞X
n=−∞

an(n+ s)(n+ s− 1)xn+s−2 −
∞X

n=−∞
anx

n+s+4 +
∞X

n=−∞

3

16
anx

n+s−2 = 0

⇒ ∞X
n=−∞

{an[(n+ s)(n+ s− 1) + 3

16
]− an−6}xn−2 = 0

Setting n = 0 gives the indicial equation (a0 6= 0, a−6 = 0)

s(s− 1) + 3

16
= 0

which implies either s = 1
4
or s = 3

4
.
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For s = 1
4
, we have

an[(n+
1

4
)(n− 3

4
) +

3

16
] = an−6

i.e
an =

an−6
n(n− 1

2
)

Then putting n = 6m, we obtain

a6m =
a6(m−1)

62m(m− 1
12
)

Therefore, we conclude

a6m =
Γ(11

12
)

62mm!Γ(m+ 11
12
)
a0

and the solution is proportional to

y5(x)=x
1
4

P∞
n=0

x6n

62nn!Γ(n+ 11
12
)

Clearly, the series is convergent for all |x| <∞ (say, by ratio test).
For s = 3

4
,we have

an[(n+
3

4
)(n− 1

4
) +

3

16
] = an−6

i.e
an =

an−6
n(n+ 1

2
)

Then putting n = 6m, we obtain

a6m =
a6(m−1)

62m(m+ 1
12
)

Therefore, we conclude

a6m =
Γ(13

12
)

62mm!Γ(m+ 13
12
)
a0

and the solution is proportional to

y6(x)=x
3
4

P∞
n=0

x6n

62nn!Γ(n+ 13
12
)

Clearly, the series is convergent for all |x| <∞ (say, by ratio test).
The general solution to the differential equation will then be a linear combination of those
two solutions, namely y5(x) and y6(x), for |x| <∞.

(d) y00 +(x2 + 3
16
x−2)y = 0.
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Since we know that x = 0 is a regular singular point, we expand a Frobenius Series y(x) =P∞
n=−∞ anx

n+s; an = 0 if n < 0. Substituting y00 as given in (3) into the equation, we obtain

∞X
n=−∞

an(n+ s)(n+ s− 1)xn+s−2 +
∞X

n=−∞
anx

n+s+2 +
∞X

n=−∞

3

16
anx

n+s−2 = 0

⇒ ∞X
n=−∞

{an[(n+ s)(n+ s− 1) + 3

16
] + an−4}xn−2 = 0

Setting n = 0 gives the indicial equation (a0 6= 0, a−4 = 0)

s(s− 1) + 3

16
= 0

which implies either s = 1
4
or s = 3

4
.

For s = 1
4
, we have

an[(n+
1

4
)(n− 3

4
) +

3

16
] = −an−4

i.e
an = − an−4

n(n− 1
2
)

Then putting n = 4m, we obtain

a4m = (−1)m a4(m−1)
42m(m− 1

8
)

Therefore, we conclude

a4m = (−1)m
Γ(7

8
)

42mm!Γ(m+ 7
8
)
a0

and the solution is proportional to

y7(x)=x
1
4

P∞
n=0(-1)

n x4n

42nn!Γ(n+ 7
8
)

Clearly, the series is convergent for all |x| <∞ (say, by ratio test).
For s = 3

4
, we have

an[(n+
3

4
)(n− 1

4
) +

3

16
] = −an−4

i.e
an = − an−4

n(n+ 1
2
)

Then putting n = 4m, we obtain

a4m = (−1)m a4(m−1)
42m(m+ 1

8
)

Therefore, we conclude

a4m = (−1)m
Γ(9

8
)

42mm!Γ(m+ 9
8
)
a0
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and the solution is proportional to

y8(x)=x
1
4

P∞
n=0(-1)

n x4n

42nn!Γ(n+ 9
8
)

Clearly, the series is convergent for all |x| <∞ (say, by ratio test).
The general solution of the differential equation then is a linear combination of the two
solutions found above.

(e) y00 + (ν + 1
2
− 1

4
x2)y = 0, ν a constant. (parabolic cylinder equation)

We remember from problem(1.e) that our transformed equation was

Y 00 − xY + νY = 0

where y = e−
1
4
x2Y. Since now x = 0 is an ordinary point, we simply expand the Taylor Series

Y (x) =
P∞

n=−∞ anx
n. Then Y 00(x) =

P∞
n=−∞ n(n − 1)anxn−2. Substituting those into the

equation, we obtain

∞X
n=−∞

n(n− 1)anxn−2 −
∞X

n=−∞
nanx

n +
∞X

n=−∞
νanx

n = 0

or ∞X
n=−∞

(n+ 2)(n+ 1)an+2x
n −

∞X
n=−∞

(n− ν)anx
n = 0

which gives
(n+ 2)(n+ 1)an+2 − (n− ν)an = 0

Then

an =
(n− 2− ν)

n(n− 1) an−2 (4)

Letting n = 2m,

a2m =
2(m− 1− ν

2
)

22m(m− 1
2
)
a2(m−1)

Then

a2m =
2(m− 1− ν

2
)

22m(m− 1
2
)
a2(m−1)

Then

a2m =
Γ(m− ν

2
)Γ(1

2
)

2mm!Γ(m+ 1
2
)Γ(−ν

2
)
a0

Therefore one of the solutions is proportional to

y9(x)=e−
1
4
x2
P∞

n=0

Γ(n−ν
2
)

2nn!Γ(n+1
2
)
x2n
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The series is convergent for all |x| <∞. To find the other solution, we let n = 2m+1 in (4),
to obtain

a2m+1 =
2m− 1− ν

2m(2m+ 1)
a2(m−1)+1 =

(m− ν+1
2
)

2m(m+ 1
2
)
a2(m−1)+1

Then

a2m+1 =
Γ(m− ν−1

2
)Γ(1

2
)

2mm!Γ(m+ 3
2
)Γ(−1+ν

2
)
a1

Therefore one of the solutions is proportional to

y10(x)=e−
1
4
x2
P∞

n=0

Γ(n− ν−1
2
)

2nn!Γ(n+ 3
2
)
x2n+1

The series is convergent for all |x| <∞.
The general solution can be written as a linear combination of y9(x) and y10(x).

Problem 3(25pts): Calculate the Quantity

lim
p→n

Jp(x)− cosπpJ−p(x)
sinπp

From now on, let us call this quantity Qn(x). Since

Jp(x) = e
p log(x2 )

∞X
m=0

(−1)m(x/2)2m
m!Γ(m+ p+ 1)

∂Jp(x)

∂p
= log

³x
2

´
Jp(x)−

³x
2

´p ∞X
m=0

(−1)m ¡x
2

¢2m
Γ0(m+ p+ 1)

m!Γ2(m+ p+ 1)

And of course

∂J−p(x)
∂p

= − log
³x
2

´
J−p(x) +

³x
2

´−p ∞X
m=0

(−1)m ¡x
2

¢2m
Γ0(m− p+ 1)

m!Γ2(m− p+ 1)

The numerator and denominator of Qn(x) both tend to zero as p → n, so we must use
L’Hopital’s Rule to obtain the limit by differentiating the top and bottom with respect to p.

Qn(x) = lim
p→n

∂Jp(x)
∂p
−
³
−π sinπpJ−p(x) + cosπp∂J−p(x)∂p

´
π cosπp

The middle term tends to zero in the limit, and since cosπp = (−1)p,

(−1)nQn(x) = 1

π

µ
∂Jn(x)

∂n
− (−1)n∂J−n(x)

∂n

¶

10



∴ (−1)nQn(x) = 1

π

³
log
³x
2

´
Jn(x) + (−1)n log

³x
2

´
J−n(x)

´
− 1

π

³x
2

´n ∞X
m=0

(−1)m ¡x
2

¢2m
Γ0(m+ n+ 1)

m!Γ2(m+ n+ 1)

− 1
π
(−1)n

³x
2

´−n ∞X
m=0

(−1)m ¡x
2

¢2m
Γ0(m− n+ 1)

m!Γ2(m− n+ 1)

∴ (−1)nQn(x) =2
π
log
³x
2

´
Jn(x)−

¡
x
2

¢n
π

∞X
m=0

¡−1
4
x2
¢m

Γ0(m+ n+ 1)
m!Γ2(m+ n+ 1)

− 1
π

n−1X
m=0

(−1)m+n ¡x
2

¢2m−n
Γ0(m− n+ 1)

m!Γ2(m− n+ 1)

− 1
π

∞X
m=n

(−1)m+n ¡x
2

¢2m−n
Γ0(m− n+ 1)

m!Γ2(m− n+ 1)

(5)

where I have used the fact that Jn(x) = (−1)nJn(x) to obtain the first log term above. I
have also split up the last infinite series into two parts - one involving a sum from zero to
n − 1, and the other from n to ∞. The reason for this is because for the third part of
(−1)nQn(x) above, the arguments of the gamma functions are negative integers and require
more analysis. We now consider the three sums separately. If we define ψ(x) = Γ0(x)

Γ(x)
(ψ is

then the digamma function), then the first of the sums

−
¡
x
2

¢n
π

∞X
m=0

¡−1
4
x2
¢m

Γ0(m+ n+ 1)
m!Γ2(m+ n+ 1)

= −
¡
x
2

¢n
π

∞X
m=0

¡−1
4
x2
¢m

ψ(m+ n+ 1)

m!(m+ n)!

The properties of the Digamma function ψ(x) are not used anywhere in this question - if
you’re not comfortable with it, just assume it’s a shorthand notation for Γ0(x)

Γ(x)
.

The last sum in (5) can be simplified by relabelling the summing index. If we let s = m−n,
then

−1
π

∞X
m=n

(−1)m+n ¡x
2

¢2m−n
Γ0(m− n+ 1)

m!Γ2(m− n+ 1) = −
¡
x
2

¢n
π

∞X
s=0

¡−1
4
x2
¢s

ψ(s+ 1)

s!(n+ s)!

We finally come to the third sum in (5):

−1
π

n−1X
m=0

(−1)m+n ¡x
2

¢2m−n
Γ0(m− n+ 1)

m!Γ2(m− n+ 1)
Note that the arguments in the gamma functions are all negative integers. We have to be
careful here, because Γ(x) becomes infinite for negative integers x, and so Γ0(x) is certainly
not well defined for negative integers either. If you remember, the ratio of the Gamma
function’s derivative to the function squared came originally from differentiating the reciprical
of the function, when we calculated ∂J−p(x)

∂p
. What we require then is
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d

dx

1

Γ(x)

¯̄̄̄
m−n+1

(6)

Using the “reflection formula” (should be given in Bender and Orszag) Γ(z)Γ(1− z) = π
sinπz

,
we have that

d

dx

1

Γ(x)

¯̄̄̄
m−n+1

=
d

dx
Γ(1− x)sinπx

π

¯̄̄̄
m−n+1

which can be calculated in a straight-forward way. We find that

−Γ0(m− n+ 1)
Γ2(m− n+ 1) = −Γ(n−m)(−1)

n−m

Putting all four parts of Qn(x) together, we finally have

Qn(x)(−1)n =2
π
log
³x
2

´
Jn(x)

−
¡
x
2

¢n
π

∞X
m=0

¡−1
4
x2
¢m

m!(m+ n)!
(ψ(m+ n+ 1) + ψ(m+ 1))

−
¡
x
2

¢−n
π

n−1X
m=0

³
x2

4

´
(n−m− 1)!
m!

The quantity Qn(x)(−1)n is actually a Bessel function of the second kind, sometimes also
called a Neumann function - denoted usually by Yn(x). It is a solution to Bessel’s Equation,
but is linearly independent to both Jn(x) and J−n(x)

Problem 4(10pts): Let y1(x) = (1 + x) and y2(x) = x2 be the two independent
solutions of equation y00+c(x)y0+d(x)y = 0. Find c(x) and d(x) and show that both
of them have a simple pole at x = 0. What do you learn from this example.

Plugging in y1 and y2 in, we obtain

c(x) + (1 + x)d(x) = 0

2 + 2xc(x) + x2d(x) = 0

Solving this set of equations, we find

c(x) = −2(x+ 1)
x(x+ 2)

, d(x) =
2

x(x+ 2)

which, obviously, have simple poles at x = 0.
Therefore the differential equation in question has a (regular) singular point at x = 0. Yet,
it has two independent solutions which are analytic everywhere. The moral of this example
is that, that a differential equation has singularity at a point does not guarantee that it will
have singular solutions around that point.
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