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Provided by Mustafa Sabri Kilic

1. Solve approximately

²y00 + (1 + x2)y0 + y = 0, 0 < x < 1, ² << 1 (1)

with boundary conditions
y(0) = y(1) = 1 (2)

2. Solve approximately

²y00 + x(1 + x)y0 +
1

2
y = 0, 0 < x < 1, ² << 1 (3)

with boundary conditions

y(0) = 1 and y(1) = 2 (4)

3. Solve approximately

²y00 − 2xy0 + (1 + 3x3)y = 0, − 1 < x < 1, ² << 1 (5)

with boundary conditions

y(−1) = 2 and y(1) = 3 (6)

Solutions:

1. Since a(x) = −2 sinx ≤ 0, the rapidly varying solution is increasing with x. Thus there
is a boundary layer of width ² near the endpoint x = 1. Also, since a(x) has a simple
zero at x = 0, there is a boundary layer of width

√
² near the endpoint x = 0.

We start by seeking the solution yin(x) valid inside the boundary layer near x = 0.
This is because yr(x) is negligible in this region. Thus the solution in this region has
only one arbitrary constant which can be determined from the boundary condition at
x = 0.

The solution inside the boundary layer near x = 0 is a linear combination of the
solutions given by

y± = e−αx
2/4²Dν(±

r
|α|
²
x) (7)

where

ν =
β

|α| −
sign(α) + 1

2
(8)

1



where β = cos(x)|x=0 = 1, and α = a0(x)|x=0 = −2 cos 0 = −2. Thus ν = 1/2, and the
solutions are

y± = e−x
2/2²D1/2(±

r
2

²
x) (9)

The solution y− is the rapidly increasing solution which is negligible inside the boundary
layer near x = 0. Thus we have

y
(near 0)
in (x) = ex

2/2²D1/2(

r
2

²
x)

1

D1/2(0)
(10)

where the boundary conditon y(0) = 1 has been utilized. Remembering that

Dν(X) ≈ Xνe−X
2/4, X →∞ (11)

for x >>
√
², we conclude

y
(near 0)
in (x) ≈ 1

D1/2(0)
(

r
2

²
x)1/2 (12)

Outside the boundary layers, we have

−2(sinx)y0 + (cosx)y = 0 (13)

which gives
yout(x) = c

√
sinx (14)

Matching yout with yin in the region 1 >> x >>
√
², we obtain c = 1

D1/2(0)
(2
²
)1/4. Thus

yout(x) =
1

D1/2(0)
(
2

²
)1/4
√
sinx (15)

In particular, yout(1) = 1
D1/2(0)

(2
²
)1/4
√
sin 1.

Finally, we seek the the solution inside the boundary layer near x = 1. Since a(1) =
−2 sin 1, we have

yr(x) = [1− yout(1)]e−2 sin 1(1−x)/² (16)

Thus we have

y
(near 1)
in (x) =

1

D1/2(0)
(
2

²
)1/4
√
sin 1 + [1− 1

D1/2(0)
(
2

²
)1/4
√
sin 1]e−2 sin 1(1−x)/² (17)

2. Since a(x) = x(1 + x) ≥ 0, the rapidly varying solution is a decreasing function of x,
hence there is a boundary layer near x = 0. Since a(0) = 0, which means that x = 0 is
a turning point, the width of the boundary layer near x = 0 is of order

√
².

The rapidly varying solution yr is negligible outside the boundary layer. Thus when
x >>

√
², the solution is approximately equal to yout which satisfies

x(1 + x)y0out +
1

2
yout = 0 (18)
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This equation yields yout(x) = c
q

x+1
x
where c is a constant. Making use of the boundary

condition at x = 1, we find

yout(x) =

r
2(x+ 1)

x
(19)

Inside the boundary layer near x = 0, using the formulae given in the solution of
problem 1,with α = 1,β = 1/2, ν = −1/2, we find

yin(x) = e
−x2/4²[c1D−1/2(

r
1

²
x) + c2D−1/2(−

r
1

²
x)] (20)

where both c1 and c2 are arbitrary constants.We eliminate one of those constants by
matching the solutions yin and yout in the region 1 >> x >>

√
²,that is, by observing

yin(x) ≈ e−x2/4²c2D−1/2(−
r
1

²
x) ≈ c2

√
2π

Γ(1/2)
(

r
1

²
x)−1/2 = c2

√
2(

r
1

²
x)−1/2 (21)

by virtue of the formula

Dν(X) ≈
√
2π

Γ(−ν) |X|
−ν−1eX

2/4, X →∞ (22)

This is because the first summand, c1D−1/2(−
q

1
²
x), vanishes as x >>

√
², which can

be seen from (11).Also

yout(x) ≈
r
2

x
(23)

in the region 1 >> x >>
√
². We note that both yin and yout are equal to a constant

times x−1/2 in the region 1 >> x >>
√
². This is an indication that this region is the

overlapping region in which both approximations hold. Joining yin and yout in this
overlapping region gives us

c2 = (
1

²
)1/4 (24)

From the boundary condition at x = 0, we know c1 + c2 = 1/D−1/2(0), hence c1 =
1/D−1/2(0)− (1² )1/4. Therefore

yin(x) = e
−x2/4²[(

1

D−1/2(0)
− (1

²
)1/4)D−1/2(

r
1

²
x) + (

1

²
)1/4D−1/2(−

r
1

²
x)] (25)

As a final observation, we note that yout(0) is infinite. But as we continue yout(x) into
the region of the boundary layer, it turns into

(
1

²
)1/4e−x

2/4²D−1/2(−
r
1

²
x) (26)

At x = 0, the expression above is equal to (1
²
)1/4D−1/2(0), which is a large number but

not infinity.
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3. We observe that, since a(0) = 0, there is turning point at x = 0, which is an interior
point. Hence there is a boundary layer of width order

√
² near x = 0. In this case,

we know that the roles of the slowly varying solution and the rapidly varying solution
interchange as one crosses the turning point x = 0.

By the terminology of the notes and the book, we have α = −2. Thus the negligible
solution is the slowly varying solution, and the (possibly) order 1 solution is the rapidly
varying solution.

Also, the rapidly varying solution is increasing for x > 0. Therefore, there is a boundary
layer of width ² near x = 1. Similarly, since the rapidly varying solution is decreasing
for x < 0, there is a boundary layer of width of order ² near x = −1.(This is always
the case if α < 0, and there are no other turning points)

Let us start with the slowly varying solution at x = −1. Since this solution becomes
the rapidly varying solution in the region x > 0, and since the value of the solution at
x = 1 is of order unity, this solution must be exponentially small outside the boundary
layer near x = 1.

Similarly if we start with the slowly varying solution at x = 1, and continue it to
negative values of x, it becomes the rapidly varying solution in the region x < 0. Thus
this solution must be exponentially small outside of the boundary layer at x = −1.
The solution of the problem is the sum of the two solutions described above. It is
appreciable only near the endpoints. Near x = 1, we have a(x) = −2, thus for x > 0

yin1(x) ≈ 3e−2(1−x)/² (27)

Similarly, for x < 0
yin2(x) ≈ 2e−2(x+1)/² (28)

where the boundary conditions are utilized. Finally, we can write

yuniform(x) = 3e
−2(1−x)/² + 2e−2(x+1)/² (29)
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