Assignment 7 Solutions: Boundary Layer Theory

Provided by Mustafa Sabri Kilic

1. Solve approximately

$$
\begin{equation*}
\epsilon y^{\prime \prime}+\left(1+x^{2}\right) y^{\prime}+y=0,0<x<1, \epsilon \ll 1 \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
y(0)=y(1)=1 \tag{2}
\end{equation*}
$$

2. Solve approximately

$$
\begin{equation*}
\epsilon y^{\prime \prime}+x(1+x) y^{\prime}+\frac{1}{2} y=0, \quad 0<x<1, \epsilon \ll 1 \tag{3}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
y(0)=1 \text { and } y(1)=2 \tag{4}
\end{equation*}
$$

3. Solve approximately

$$
\begin{equation*}
\epsilon y^{\prime \prime}-2 x y^{\prime}+\left(1+3 x^{3}\right) y=0,-1<x<1, \epsilon \ll 1 \tag{5}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
y(-1)=2 \text { and } y(1)=3 \tag{6}
\end{equation*}
$$

Solutions:

1. Since $a(x)=-2 \sin x \leq 0$, the rapidly varying solution is increasing with x. Thus there is a boundary layer of width ϵ near the endpoint $x=1$. Also, since $a(x)$ has a simple zero at $x=0$, there is a boundary layer of width $\sqrt{\epsilon}$ near the endpoint $x=0$.
We start by seeking the solution $y_{i n}(x)$ valid inside the boundary layer near $x=0$. This is because $y_{r}(x)$ is negligible in this region. Thus the solution in this region has only one arbitrary constant which can be determined from the boundary condition at $x=0$.

The solution inside the boundary layer near $x=0$ is a linear combination of the solutions given by

$$
\begin{equation*}
y_{ \pm}=e^{-\alpha x^{2} / 4 \epsilon} D_{\nu}\left(\pm \sqrt{\frac{|\alpha|}{\epsilon}} x\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu=\frac{\beta}{|\alpha|}-\frac{\operatorname{sign}(\alpha)+1}{2} \tag{8}
\end{equation*}
$$

where $\beta=\left.\cos (x)\right|_{x=0}=1$, and $\alpha=\left.a^{\prime}(x)\right|_{x=0}=-2 \cos 0=-2$. Thus $\nu=1 / 2$, and the solutions are

$$
\begin{equation*}
y_{ \pm}=e^{-x^{2} / 2 \epsilon} D_{1 / 2}\left(\pm \sqrt{\frac{2}{\epsilon}} x\right) \tag{9}
\end{equation*}
$$

The solution y_{-}is the rapidly increasing solution which is negligible inside the boundary layer near $x=0$. Thus we have

$$
\begin{equation*}
y_{\text {in }}^{(\text {near } 0)}(x)=e^{x^{2} / 2 \epsilon} D_{1 / 2}\left(\sqrt{\frac{2}{\epsilon}} x\right) \frac{1}{D_{1 / 2}(0)} \tag{10}
\end{equation*}
$$

where the boundary conditon $y(0)=1$ has been utilized. Remembering that

$$
\begin{equation*}
D_{\nu}(X) \approx X^{\nu} e^{-X^{2} / 4}, X \rightarrow \infty \tag{11}
\end{equation*}
$$

for $x \gg \sqrt{\epsilon}$, we conclude

$$
\begin{equation*}
y_{i n}^{(\text {near } 0)}(x) \approx \frac{1}{D_{1 / 2}(0)}\left(\sqrt{\frac{2}{\epsilon}} x\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Outside the boundary layers, we have

$$
\begin{equation*}
-2(\sin x) y^{\prime}+(\cos x) y=0 \tag{13}
\end{equation*}
$$

which gives

$$
\begin{equation*}
y_{\text {out }}(x)=c \sqrt{\sin x} \tag{14}
\end{equation*}
$$

Matching $y_{\text {out }}$ with $y_{\text {in }}$ in the region $1 \gg x \gg \sqrt{\epsilon}$, we obtain $c=\frac{1}{D_{1 / 2}(0)}\left(\frac{2}{\epsilon}\right)^{1 / 4}$. Thus

$$
\begin{equation*}
y_{\text {out }}(x)=\frac{1}{D_{1 / 2}(0)}\left(\frac{2}{\epsilon}\right)^{1 / 4} \sqrt{\sin x} \tag{15}
\end{equation*}
$$

In particular, $y_{\text {out }}(1)=\frac{1}{D_{1 / 2}(0)}\left(\frac{2}{\epsilon}\right)^{1 / 4} \sqrt{\sin 1}$.
Finally, we seek the the solution inside the boundary layer near $x=1$. Since $a(1)=$ $-2 \sin 1$, we have

$$
\begin{equation*}
y_{r}(x)=\left[1-y_{\text {out }}(1)\right] e^{-2 \sin 1(1-x) / \epsilon} \tag{16}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
y_{\text {in }}^{(\text {near } 1)}(x)=\frac{1}{D_{1 / 2}(0)}\left(\frac{2}{\epsilon}\right)^{1 / 4} \sqrt{\sin 1}+\left[1-\frac{1}{D_{1 / 2}(0)}\left(\frac{2}{\epsilon}\right)^{1 / 4} \sqrt{\sin 1}\right] e^{-2 \sin 1(1-x) / \epsilon} \tag{17}
\end{equation*}
$$

2. Since $a(x)=x(1+x) \geq 0$, the rapidly varying solution is a decreasing function of x, hence there is a boundary layer near $x=0$. Since $a(0)=0$, which means that $x=0$ is a turning point, the width of the boundary layer near $x=0$ is of order $\sqrt{\epsilon}$.
The rapidly varying solution y_{r} is negligible outside the boundary layer. Thus when $x \gg \sqrt{\epsilon}$, the solution is approximately equal to $y_{\text {out }}$ which satisfies

$$
\begin{equation*}
x(1+x) y_{o u t}^{\prime}+\frac{1}{2} y_{o u t}=0 \tag{18}
\end{equation*}
$$

This equation yields $y_{\text {out }}(x)=c \sqrt{\frac{x+1}{x}}$ where c is a constant. Making use of the boundary condition at $x=1$, we find

$$
\begin{equation*}
y_{\text {out }}(x)=\sqrt{\frac{2(x+1)}{x}} \tag{19}
\end{equation*}
$$

Inside the boundary layer near $x=0$, using the formulae given in the solution of problem 1, with $\alpha=1, \beta=1 / 2, \nu=-1 / 2$, we find

$$
\begin{equation*}
y_{\text {in }}(x)=e^{-x^{2} / 4 \epsilon}\left[c_{1} D_{-1 / 2}\left(\sqrt{\frac{1}{\epsilon}} x\right)+c_{2} D_{-1 / 2}\left(-\sqrt{\frac{1}{\epsilon}} x\right)\right] \tag{20}
\end{equation*}
$$

where both c_{1} and c_{2} are arbitrary constants. We eliminate one of those constants by matching the solutions $y_{\text {in }}$ and $y_{o u t}$ in the region $1 \gg x \gg \sqrt{\epsilon}$, that is, by observing

$$
\begin{equation*}
y_{\text {in }}(x) \approx e^{-x^{2} / 4 \epsilon} c_{2} D_{-1 / 2}\left(-\sqrt{\frac{1}{\epsilon}} x\right) \approx c_{2} \frac{\sqrt{2 \pi}}{\Gamma(1 / 2)}\left(\sqrt{\frac{1}{\epsilon}} x\right)^{-1 / 2}=c_{2} \sqrt{2}\left(\sqrt{\frac{1}{\epsilon}} x\right)^{-1 / 2} \tag{21}
\end{equation*}
$$

by virtue of the formula

$$
\begin{equation*}
D_{\nu}(X) \approx \frac{\sqrt{2 \pi}}{\Gamma(-\nu)}|X|^{-\nu-1} e^{X^{2} / 4}, X \rightarrow \infty \tag{22}
\end{equation*}
$$

This is because the first summand, $c_{1} D_{-1 / 2}\left(-\sqrt{\frac{1}{\epsilon}} x\right)$, vanishes as $x \gg \sqrt{\epsilon}$, which can be seen from (11).Also

$$
\begin{equation*}
y_{\text {out }}(x) \approx \sqrt{\frac{2}{x}} \tag{23}
\end{equation*}
$$

in the region $1 \gg x \gg \sqrt{\epsilon}$. We note that both $y_{\text {in }}$ and $y_{o u t}$ are equal to a constant times $x^{-1 / 2}$ in the region $1 \gg x \gg \sqrt{\epsilon}$. This is an indication that this region is the overlapping region in which both approximations hold. Joining $y_{\text {in }}$ and $y_{o u t}$ in this overlapping region gives us

$$
\begin{equation*}
c_{2}=\left(\frac{1}{\epsilon}\right)^{1 / 4} \tag{24}
\end{equation*}
$$

From the boundary condition at $x=0$, we know $c_{1}+c_{2}=1 / D_{-1 / 2}(0)$, hence $c_{1}=$ $1 / D_{-1 / 2}(0)-\left(\frac{1}{\epsilon}\right)^{1 / 4}$. Therefore

$$
\begin{equation*}
y_{i n}(x)=e^{-x^{2} / 4 \epsilon}\left[\left(\frac{1}{D_{-1 / 2}(0)}-\left(\frac{1}{\epsilon}\right)^{1 / 4}\right) D_{-1 / 2}\left(\sqrt{\frac{1}{\epsilon}} x\right)+\left(\frac{1}{\epsilon}\right)^{1 / 4} D_{-1 / 2}\left(-\sqrt{\frac{1}{\epsilon}} x\right)\right] \tag{25}
\end{equation*}
$$

As a final observation, we note that $y_{\text {out }}(0)$ is infinite. But as we continue $y_{\text {out }}(x)$ into the region of the boundary layer, it turns into

$$
\begin{equation*}
\left(\frac{1}{\epsilon}\right)^{1 / 4} e^{-x^{2} / 4 \epsilon} D_{-1 / 2}\left(-\sqrt{\frac{1}{\epsilon}} x\right) \tag{26}
\end{equation*}
$$

At $x=0$, the expression above is equal to $\left(\frac{1}{\epsilon}\right)^{1 / 4} D_{-1 / 2}(0)$, which is a large number but not infinity.
3. We observe that, since $a(0)=0$, there is turning point at $x=0$, which is an interior point. Hence there is a boundary layer of width order $\sqrt{\epsilon}$ near $x=0$. In this case, we know that the roles of the slowly varying solution and the rapidly varying solution interchange as one crosses the turning point $x=0$.
By the terminology of the notes and the book, we have $\alpha=-2$. Thus the negligible solution is the slowly varying solution, and the (possibly) order 1 solution is the rapidly varying solution.
Also, the rapidly varying solution is increasing for $x>0$. Therefore, there is a boundary layer of width ϵ near $x=1$. Similarly, since the rapidly varying solution is decreasing for $x<0$, there is a boundary layer of width of order ϵ near $x=-1$. (This is always the case if $\alpha<0$, and there are no other turning points)
Let us start with the slowly varying solution at $x=-1$. Since this solution becomes the rapidly varying solution in the region $x>0$, and since the value of the solution at $x=1$ is of order unity, this solution must be exponentially small outside the boundary layer near $x=1$.
Similarly if we start with the slowly varying solution at $x=1$, and continue it to negative values of x, it becomes the rapidly varying solution in the region $x<0$. Thus this solution must be exponentially small outside of the boundary layer at $x=-1$.
The solution of the problem is the sum of the two solutions described above. It is appreciable only near the endpoints. Near $x=1$, we have $a(x)=-2$, thus for $x>0$

$$
\begin{equation*}
y_{i n 1}(x) \approx 3 e^{-2(1-x) / \epsilon} \tag{27}
\end{equation*}
$$

Similarly, for $x<0$

$$
\begin{equation*}
y_{i n 2}(x) \approx 2 e^{-2(x+1) / \epsilon} \tag{28}
\end{equation*}
$$

where the boundary conditions are utilized. Finally, we can write

$$
\begin{equation*}
y_{\text {uniform }}(x)=3 e^{-2(1-x) / \epsilon}+2 e^{-2(x+1) / \epsilon} \tag{29}
\end{equation*}
$$

