
Asymptotic Expansions of Integrals 

Lectures Fourteen and Fifteen

In the last lecture, we discuss the method of stationary phase which is applicable to the integral 
(8.36). 
If the integral (8.36) has neither points of stationary phase nor contributions from the endpoints, the 
method of stationary phase fails. As an example, consider calculating the asymptotic form of 

e?iRx 
IΩRæ : XK 

dx, R ;; 1. 
?K 1 + x2 

/The function IΩRæ is the Fourier transform of Ω1 + x2æ?1 2. Identifying uΩxæ with ?x, we see that, since 
urΩxæ : ?1 é 0, this integral has no points of stationary phase. Nor does this integral have finite 
endpoints. Therefore, the method of stationary phase is not useful for the problem. In order to find 
the asymptotic form of this integral, we must use the saddle point method whcih will be presetly 
discussed. 

D The Saddle Point Method 
The Laplace method enables us to deal with the integral of the form of (8.8), where the coefficient of 
R in the exponent is real. The method of stationary phase enables us to deal with the integral of the 
form of (8.36), where the coefficient of R in the exponent is purely imaginary. 
In this section, we shall deal with integrals of the form 

IΩRæ : X eiRfΩzæhΩzædz, (8.52) 
c 

where c is a contour in the complex z-plane and where fΩzæ and hΩzæ are analytic functions of z. This 
problem is interesting in its own right but, as we have mentioned, it may also help us to evaluate the 
asymptotic form of integrals of the form (8.36) in which there are neither finite endpoints nor points 
of staionary phase. 

Let 

fΩzæ : uΩx, yæ + ivΩx, yæ, 

then the exponential function in (8.52) is equal to 

eiRfΩzæ : eiRuΩx,yæe?RvΩx,yæ . 
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We see that the coefficient of R in the exponent above has both a real part and an imaginary part. 
In section 8B, we have treated the case in which u is zero. And in Section 8C, we have treated the 
case in which v is zero. We now treat the case with neither u nor v equal to zero. 
The magnitude of the integrand is sharply peaked around the point z0 at which v is minimum. But if 
r is not equal to zero, the integrand also oscillates rapidly in the neighborhood of z0, and the 

resulting cancellation wipes out entirely the contribution of z0. 
Let us deform, by Cauchy’s integral theorem, the contour c into another contour cr. If u happens to 
be a constant on the contour cr, then 

IΩRæ : eiRa X e?RvhΩzædz, 
c 

where a is the value of u on cr. Thus there is no cancellation due to the rapid changes of the phase 
factor of the integrand and the dominant contribution to the integral comes from the point z0 on cr at 
which v is minimum. The asymptotic form of the integral can be obtained with the use of Laplace’s 
method. 
The point z0 may be an endpoint of cr. In such a case, we may obtain the leading term of the integral 
by expanding the integrand around the endpoint and carry out the integration over an exponential 
function. 
The point z0 may also be an interior point of cr. We shall argue that, if z0 is an interior point of cr, all 
partial derivatives of u and v must vanish at z0. 
We begin by observing that, since v is minimum at z0 along the curve cr, the variation of v in the 
tangential direction of cr vanishes at z0. Also, since u is constant on cr, the variation of u in the 
tangential direction of cr is zero. The latter means that, by the Cauchy-Riemann equation, the 
variation of v in the direction orthogonal to the tangential direction of of cr is zero. Thus both partial 
derivatives of v vanish at z0. By the Cauchy-Riemann equations, so do the two partial derivatives of 
u at z0. Indeed, 

f rΩz0æ : 0. 
The point z0 is known to be a saddle point for the integral (8.52), as we shall explain further below. 
Since, along the contour c, v is minimum at z0 and u is stationary, the dominant contribution to the 
integral over c comes from the saddle point z0. The asymptotic form of the integral can be obtained 
by expanding the integrand around z0 and carrying out the Gaussian integrals. 
As we deform the contour, we may encounter singularities of the integrand. The Cauchy integral 
theorem is then no more applicable and we may not deform the contour beyond the singularity. Thus 
the singularity may contribute a dominant contribution to the integral. 
In summary, for the integral of the general form (8.52), the possible points of contribution are the 
singular points, the endpoints, and the saddle points. 
There may be more than one saddle points or singular points in the problem. Not all of them 
contribute to the asymptotic form of the integral. We must decide what contour to deform to and 
which saddle points or singular points are relevant. We shall show how to do this below. 
Doing this will require a little understanding of complex analysis. Here we’ll add to our previous 
discussions on this topic. 
A curve on which u is a constant is called a level curve of u. A curve on which v is a constant is 
called a level curve of v. We shall show that, with certain notable exceptions, the level curves of u 
intersect orthogonally with the level curves of v. 

Problem for the Reader: 
Consider in the complex plane the function 

fΩzæ : z2 : Ωx + iyæ2. 

Draw the level curves of u as well as those of v for this function. 
Answer 

We have 

uΩx, yæ : x2 ? y2, and vΩx, yæ : 2xy. 

We draw the level curves of u and the level curves of v :constant in the figure below. 
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Figure 8.8. 
Question for the Reader: 

Do the level curves of u and those of v intersect orthogonally? 
Answer 

Yes, as we can see from Fig. 8.8, the level curves of u generally intersect orthogonally with those of 
v. 
But there is one notable exception. There are two level curves of u and two level curves of v 
intersecting at the origin. The level curves of u and those of v do not intersect orthogonally at the 
origin. Instead, the two level curves of u intersect orthogonally at the origin. So do the two level 
curves of v. We note also that the derivative of fΩzæ vanishes at the origin, which is where the 
aforementioned unsual behavior occurs. 
As a general rule, if u and v are harmonic conjugates of each other the level curves of u and those of 
v intersect orthogonally, . To see this, we express the infinitesimal variation of uΩx, yæ as 

du : uxdx + uydy. 

Now on a level curve of u, the value of u does not vary. Therefore we have 

uxdx + uydy : 0, 

where dx and dy are the variations of x and y between two neighboring points on the level curve of u. 
3This says that 4u is perpendicular to the tangent vector of the level curve of u. 

3Similarly, 4v is perpendicular to the tangent vector of the level curve of v. 
Now 

3 3Ω4uæ 6 Ω4væ : uxvx + uyvy : 0, 

where the last step is obtained with the use of the Cauchy-Riemann equations (2.9). Therefore, at the 
point a level curve of u and a level curve of v intersect, the tangent vectors of these two curves are 
othogonal to each other. 
But there are exceptions. The points of exception are the points at which the derivative of fΩzæ 

3 3vanishes. At each of such points, all of the partial derivatives of u and v vanish. Thus both 4u and 4v 
3 3are null vectors at such a point and neither possess a direction. While the scalar product of 4u and 4v 

remain to vanish at a zero of f r, it is due to the vanishing of the gradient vectors, and not due to the 
orthogonality of the gradient vectors. 
Note also that two level curves of u generally do not intersect. Let a level curve be given by 

uΩx, yæ : c. 

And let Ωx0, y0æ be a point on this curve. Now by the implicit function theorem, the equation above 
has a unique solution in a neighborhood of Ωx0, y0æ with the form 

y : yΩxæ, 

provided that uyΩx0, y0æ é 0. Similarly, it has a unique solution in a neighborhood of Ωx0, y0æ with the 
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form 

x : xΩyæ, 

provided that uxΩx0, y0æ é 0. Thus, unless both ux and uy vanish, there can only be one level curve 
passing through the point Ωx0, y0æ. But at the point z0 at which f rΩz0æ : 0, both ux and uy vanish, and 
there is no reason why two level curves of u cannot intersect at z0. Indeed, we see in the example 
above that two level curves of u do intersect at the origin. Also, two level curves of v in this example 
also intersect at the origin. 
We have learned in calculus that if the derivative of a function of a real variable x vanishes at x0, 
then it has an extremum at x0 provided that its second derivative does not vanish. This is quite 
different for uΩx, yæ and vΩx, yæ, which are functions of two variables. Near the point z0 at which the 
derivative of fΩzæ vanishes, we have 

fΩzæ ? fΩz0æ p f rrΩz0æΩz ? z0æ2/2. 

Therefore, if f rrΩz0æ é 0, the behavior of fΩzæ near z0 is the same as the function z2 near the origin. 
Problem for the Reader: 

Let vΩx, yæ : 2xy, the imaginary part of z2. What is the behavior of v on the line x : y and the line 
x : ?y? What does v look like near x : y : 0? 

Answer 
The line x : y is a level curve of u. On this line v:2x2, and is minimum at the origin. 
The line x : ?y is also a level curve of u. On this line v : ?2x2, and is maximum at the origin. 

e

If we consider vΩx, yæ as a function of x and y in a three-dimensional space, it resembles the surface 
of a saddle near the point x : y : 0, where the line x : y is in the front-back direction of the saddle, 
and the line x : ?y is in the sidewise direction of the saddle. The function vΩx, yæ is neither 
absolutely maximum nor absolutely minimum at the origin. Thus the origin is a saddle point of v. 
Similarly, the origin is a saddle point of u : x2 ? y2. 
If u and v are the real part and the imaginary part of an analytic function the derivative of which 
vanishes at z0, then z0 is a saddle point of u and that of v. 
By definition, the value of a function vΩx, yæ does not vary on any of its level curves. Thus it varies 
most rapidly in the direction orthogonal to its level curve. Since the level curves of u intersect those 
of v orthogonally, v varies most rapidly on a level curve of u, and u varies most rapidly on a level 
curve of v. 
As a consequence, the function e?Rv varies most rapidly on a level curve of u. Now we have seen that 
there are two level curves of u passing through the point z0. We have also seen that the function 
vΩx, yæ is minimum on one of these curves, and maximum on the other curve. Thus the function 
?RvΩzæ decreases most rapidly as one leaves z0 on the former curve. This curve is called the path of 

steepest descent. Similarly, e?RvΩzæ increases most rapidly as one leaves z0 on the latter curve, which 
is called the path of steepest ascent. 
Consider now the integral in the general form of (8.52). If c is a level curve of uΩx, yæ, the phase of 
the exponential function of (8.52) is a constant and can be taken outside of the integral. Also, the 
magnitude e?RvΩx,yæ varies most rapidly on c. Thus the integral is of the form of (8.8), and the 
dominant contributions come from the point at which v is minimum. It is therefore a good idea to 
deform the contour of the integral of (8.52) into a level curve of u, for then the asymptotic form of 
the integral can be obtained with the Laplace method. 
Take the example of (8.47), in which fΩzæ : z2. We cannot easily go from ?1 to 1 on a curve of 
constant u. Let us therefore take the path ACDEFB in the figure. Along the path AC, the phase 
uΩx, yæ is a constant and vΩx, yæ is minimum at the endpoint A. Thus the dominant contribution to the 
integral along AC is given by a small neighborhood of width 1/R near the endpoint A, and can be 
calculated by the Laplace method. The result is the same as we have obtained by using the formula 
(8.39) and keeping only the contribution from the endpoint A. The contour CD is not a level curve of 
u. Instead, it is a level curve of v, on which v : 1. The integrand on CD is as small as e?R, hence the 
integral over CD will be neglected. Next we consider the contour DE. This contour is a path of 
steepest descent with the saddle point at the origin. Thus we may again use the Laplace method to 
evaluate the contribution of the origin, and the answer is the same as that calculated with the use of 
(8.45). The contribution of the contour EF, which is not a level curve of u, will be neglected as the 
integrand is exponentially small on this contour. The dominant contribution of the contour FB, 
which is a level curve of u, comes from the point B. Applying the Laplace method gives us the same 
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result obtained with the use of (8.39). Thus, by deforming the contour of integration, we succeed in 
verifying (8.48) with the application of the Laplace method. 
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Figure 8.8. 
We note that it will not be fruitful to deform the contour from the real axis to the curve AC’D’E’F’B. 
For if we do this, we will find that on the curve AC’, v is minimum not at A but at C’. Thus the 
dominant contributions to the integral over AC’ come from the point C’, where the integrand is of 
the order of eR. This large term is cancelled by an equally large term with the opposite sign coming 
from the integral over C’D’. Also, while the contour D’E’ passes through the saddle point z : 0, this 
contour is one of the steepest ascent and the contributions of this contour come not from the saddle 
point z : 0 but from the endpoints D’ and E’. Indeed, the integral over each of the segments of the 
curve AC’D’E’F’B has a very large leading term. These terms cancel one another and it is extremely 
difficult to determine what remains after such extensive cancellations. 
Therefore, as we start from an endpoint of the contour and try to deform the contour to a level curve 
of u, be sure to go in the direction v increases, not the other way around. 
It is possible to deform the contour into a sum of curves all of which are level curves of u. Instead of 
taking the contour ACDEFB to go from A to B, we may go from A to C on the level curve of u as 
before, but instead of making a turn at C, we follow this level curve all the way to infinity. We then 
change over at infinity to the line x : y, and go from one infinite end of this straightline to another 
infinite end of this straightline. Then we change over at infinity to the level curve on which F and B 
lie to arrive at B. In this way u is a constant on each of the segments of the contours. 
Applying the Laplace method to each of the contours, we may obtain not only the leading term but 
also the next leading terms. To do this, we merely have to keep more terms in the expansions of the 
integrand around the points of contribution and carry out the integration. 
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