18.305 Solutions

Assignment 3: WKB method

Provided by Mustafa Sabri Kilic

1. (problem 4.a. on page 205) Solve the following equation in closed form

$$
\begin{equation*}
y^{\prime \prime}+x^{m} y=0 \tag{1}
\end{equation*}
$$

Solution:

For simplicity, let us first assume that we are looking for the solution for $x>0$. The WKB solutions of (1) are easily found to be

$$
\begin{equation*}
y_{W K B}^{ \pm}=x^{-m / 4} \exp \left(\pm i \frac{2}{m+2} x^{\frac{m+2}{2}}\right) \tag{2}
\end{equation*}
$$

As we know, the WKB solutions for the Bessel equation

$$
\left[\rho^{2} \frac{d^{2}}{d \rho^{2}}+\rho \frac{d}{d \rho}+\rho^{2}-p^{2}\right] Y(\rho)=0
$$

are

$$
\begin{equation*}
Y_{W K B}=\rho^{-1 / 2} \exp (\pm i \rho) \tag{3}
\end{equation*}
$$

Comparing the exponent of the solution (2) with that of (3) suggests using the transformation

$$
\rho=\frac{2}{m+2} x^{\frac{m+2}{2}}
$$

With this identification of the independent variables, (2) will become

$$
y_{W K B}^{ \pm}=\rho^{-\frac{m}{2(m+2)}} \exp (\pm i \rho)
$$

To make the WKB solutions exactly the same, we put

$$
\begin{equation*}
y=\rho^{-\frac{m}{2(m+2)}} \rho^{1 / 2} Y=\rho^{\frac{1}{m+2}} Y \tag{4}
\end{equation*}
$$

We now plug

$$
\begin{aligned}
\rho & =\frac{2}{m+2} x^{\frac{m+2}{2}} \\
x & =\left(\frac{m+2}{2} \rho\right)^{\frac{2}{m+2}} \\
\frac{d}{d x} & =\frac{d \rho}{d x} \frac{d}{d \rho}=-\left(\frac{m+2}{2} \rho\right)^{\frac{m}{m+2}} \frac{d}{d \rho} \\
\frac{d^{2}}{d x^{2}} & =\left[\left(\frac{m+2}{2} \rho\right)^{\frac{m}{m+2}} \frac{d}{d \rho}\right]\left[\left(\frac{m+2}{2} \rho\right)^{\frac{m}{m+2}} \frac{d}{d \rho}\right]=\left(\frac{m+2}{2} \rho\right)^{\frac{2 m}{m+2}} \frac{d^{2}}{d \rho^{2}}+\left(\frac{m+2}{2}\right)^{\frac{2 m}{m+2}}\left(\frac{m}{m+2}\right) \rho^{\frac{-2}{m+2}} \frac{d}{d \rho}
\end{aligned}
$$

into (1), to obtain

$$
\left[\rho^{2} \frac{d^{2}}{d \rho^{2}}+\frac{m}{m+2} \rho \frac{d}{d \rho}+\rho^{2}\right] Y(\rho)=0
$$

Now we will use (4) on this last equation, we will make the replacements

$$
\begin{aligned}
\frac{d}{d \rho} & \rightarrow\left(\frac{d}{d \rho}+\frac{1}{\rho(m+2)}\right) \\
\frac{d^{2}}{d \rho^{2}} & \rightarrow\left(\frac{d}{d \rho}+\frac{1}{\rho(m+2)}\right)^{2}=\frac{d^{2}}{d \rho^{2}}+\frac{2}{\rho(m+2)} \frac{d}{d \rho}+\frac{1}{\rho^{2}(m+2)^{2}}-\frac{1}{\rho^{2}(m+2)}
\end{aligned}
$$

which gives us the equation

$$
\left[\rho^{2} \frac{d^{2}}{d \rho^{2}}+\rho \frac{d}{d \rho}+\rho^{2}-\left(\frac{1}{m+2}\right)^{2}\right] Y(\rho)=0
$$

We observe that this is Bessel's equation with $p=\frac{1}{m+2}$. Therefore its general solution is

$$
Y(\rho)=a J_{\frac{1}{m+2}}(\rho)+b J_{\frac{-1}{m+2}}(\rho)
$$

where a and b are arbitrary constants. Therefore the general solution of our original equation (1) is

$$
y=x^{1 / 2}\left[a J_{\frac{1}{m+2}}\left(\frac{2}{m+2} x^{\frac{m+2}{2}}\right)+b J_{\frac{-1}{m+2}}\left(\frac{2}{m+2} x^{\frac{m+2}{2}}\right)\right]
$$

which is obtained by undoing the variable transformations. Here a and b are again arbitrary constants.
This last equation is valid when $x>0$ or m is even. If $x<0$ and m is odd, we will have the form

$$
y=|x|^{1 / 2}\left[a J_{\frac{1}{m+2}}\left(\frac{2 i}{m+2}|x|^{\frac{m+2}{2}}\right)+b J_{\frac{-1}{m+2}}\left(\frac{2 i}{m+2}|x|^{\frac{m+2}{2}}\right)\right]
$$

which can be obtained by following the same steps.
2. (problem 5.b. on page 206)Obtain the WKB solutions of the following equation and determine for what values of $t>0$ are these approximations good.

$$
\frac{d^{2} y}{d t^{2}}+e^{-\epsilon t} y=0, \text { where } 0<\epsilon \ll 1
$$

Solution:

We let

$$
\begin{aligned}
p^{2} & =e^{-\epsilon t} \\
& \Rightarrow \int p d t=-\frac{2}{\epsilon} e^{-\frac{1}{2} \epsilon t}
\end{aligned}
$$

hence the WKB solutions are

$$
\exp \left(\frac{1}{4} \epsilon t\right) \exp \left(\pm i \frac{2}{\epsilon} e^{-\frac{1}{2} \epsilon t}\right)=\exp \left(\frac{1}{4} \epsilon t \pm i \frac{2}{\epsilon} e^{-\frac{1}{2} \epsilon t}\right)
$$

which are "good" for

$$
\left|\frac{d}{d t} \frac{1}{p}\right|=\left|\frac{d}{d t} e^{\frac{1}{2} \epsilon t}\right|=\left|\frac{\epsilon}{2} e^{\frac{1}{2} \epsilon t}\right| \ll 1
$$

i.e for

$$
t \ll \frac{2}{\epsilon} \ln \left(\frac{2}{\epsilon}\right)
$$

3. Find the WKB solutions of the following equation and determine the values

 of x for which those WKB solutions are good approximations.$$
x y^{\prime \prime}+(c-x) y^{\prime}-a y=0
$$

Solution:

We first rewrite the eqaution in the form

$$
\begin{equation*}
y^{\prime \prime}+\left(\frac{c}{x}-1\right) y^{\prime}-\frac{a}{x} y=0 \tag{5}
\end{equation*}
$$

To be able to obtain the WKB solutions, we shall first transform the above equation into the form

$$
y^{\prime \prime}-\eta^{2} y=0
$$

via a transformation. Let

$$
y=e^{f(x)} Y
$$

then

$$
\begin{aligned}
D & \rightarrow D+f^{\prime} \\
D^{2} & \rightarrow D^{2}+2 f^{\prime} D+\left(f^{\prime}\right)^{2}+f^{\prime \prime}
\end{aligned}
$$

and (5) becomes

$$
\begin{equation*}
\left[D^{2}+\left(2 f^{\prime}+\frac{c}{x}-1\right) D+\left(f^{\prime}\right)^{2}+f^{\prime \prime}+f^{\prime}-\frac{a}{x}\right] Y=0 \tag{6}
\end{equation*}
$$

To make the coefficient of Y^{\prime} zero, we must have

$$
\begin{aligned}
& f^{\prime}=-\frac{1}{2}\left(\frac{c}{x}-1\right) \\
\Rightarrow & f(x)=\frac{1}{2} x-\frac{1}{2} c \ln x \\
y= & x^{-\frac{c}{2}} e^{\frac{1}{2} x}
\end{aligned}
$$

Therefore (6) is

$$
\begin{equation*}
\left[D^{2}-\left(\frac{1}{4}-\frac{c-2 a}{2 x}-\frac{1}{4} \frac{c^{2}-2 c}{x^{2}}\right)\right] Y=0 \tag{7}
\end{equation*}
$$

We will now find WKB solutions of this last differential equation.

$$
\begin{aligned}
\eta & =\left(\frac{1}{4}-\frac{c-2 a}{2 x}-\frac{1}{4} \frac{c^{2}}{x^{2}}\right)^{1 / 2}=\frac{1}{2}\left(1-2 \frac{c-2 a}{x}-\frac{c^{2}-2 c}{x^{2}}\right)^{1 / 2} \\
& \approx \frac{1}{2}\left(1-\frac{c-2 a}{x}+\frac{1}{4} \frac{c-2 a}{x^{2}}-\frac{1}{2} \frac{c^{2}-2 c}{x^{2}}+\ldots\right) \\
& =\frac{1}{2}\left(1-\frac{c-2 a}{x}+O\left(\frac{1}{x^{2}}\right)\right)
\end{aligned}
$$

The important thing to keep in mind is that we can neglect any terms in η which are smaller than $O\left(\frac{1}{x}\right)$ but we cannot neglect terms of $O\left(\frac{1}{x}\right)$ in η. This is because,
when η is integrated, a term of $O\left(\frac{1}{x}\right)$ will give a logarithmic function, and in the WKB solution this will show up as a factor in front. Smaller terms, however, will not matter.
For example $\frac{1}{x^{2}}$ in η will integrate to $-\frac{1}{x}$, which will contribute a factor $\exp \left(-\frac{1}{x}\right)$. As $x \gg 1$, this factor will be very close to 1 , hence negligible. Therefore, we can take

$$
\begin{aligned}
\eta & =\frac{1}{2}-\frac{c-2 a}{2 x} \\
\int \eta d x & =\frac{1}{2} x-\left(\frac{c}{2}-a\right) \ln x
\end{aligned}
$$

Also

$$
\frac{1}{\sqrt{\eta}}=\frac{1}{\sqrt{\frac{1}{2}-\frac{c-2 a}{2 x}}} \approx \sqrt{2}: \text { just a constant }
$$

because of the same type of reasons. Hence the WKB solutions of (7) are

$$
x^{\mp\left(\frac{c}{2}-a\right)} \exp \left(\pm \frac{1}{2} x\right)
$$

Hence the WKB solutions of the original problem are

$$
x^{-a}, x^{a-c} e^{x}
$$

which are familiar function from the 2nd homework assignment. For the validity issue we look at the quantity

$$
\left|\frac{d}{d x}\left(\frac{1}{2}-\frac{c-2 a}{2 x}\right)^{-1}\right|=\frac{\frac{c-2 a}{2 x^{2}}}{\left(\frac{1}{2}-\frac{c-2 a}{2 x}\right)^{2}} \ll 1
$$

which is satisfied when

$$
x \gg \max \left\{\sqrt{\left|\frac{c}{2}-a\right|},|c-2 a|\right\}
$$

This last condition, combined with

$$
x \gg \sqrt{\left|c^{2} / 2-c\right|}
$$

justify also the various approximations we made during the course of the solution.

