
The WKB Approximation 
Lecture Eleven Turning Point 
As we have mentioned, the WKB approximation is useful in problems of wave propagation. In 

this section we demonstrate this by applying it to the wave equation which governs the quantum 
mechanical behavior of a particle. 

Consider the time-independent Schrodinger equation of one spatial dimension discussed at the 
end of Chapter 5. We will write this equation in the form 

d2` 
+ R2øE ? VΩxæ¿` : 0, (7.50) 

dx2 

R 2m m 
R 

where is equal to divided by the Planck constant, with the mass of the particle. We shall 
consider as a very large number. 

As we have mentioned, |`|2 is the probability density of the particle, E is the energy of the 
particle, and VΩxæ is the potential. We note that E ? V is equal to the kinetic energy of the particle. 

In the region where 

E ; VΩxæ, 

the kinetic energy of the particle is positive. Comparing with (7.1), we identify pΩxæ with 

R E ? VΩxæ . 

The WKB solutions are 

p?1/2e
i X pdx 

and p?1/2e 
?i X pdx 

. (7.51) 

These solutions are oscillatory as a function of x. 
In the region where 

E 9 VΩxæ, 

the kinetic energy of the particle is negative, and the momentum of the particle is imaginary. In 
classical mechanics, this region is inaccessible to the particle. The WKB solutions are 

X Ndx ?X Ndx 
N?1/2e and N?1/2e , (7.52) 

where 

N : R VΩxæ ? E . 

The first solution above is exponentially increasing as x increases, and the second solution above is 
exponentially decreasing as x increases. Since a particle is rarely observed in the classically 
inaccessible region, we require the solution to be the one which decreases more and more as x goes 
deeper and deeper into the classically inaccessble region. 

Let there be a point x0 at which 
E ? VΩx0æ : 0. 
Note that the point x0 is the point at which the momentum of the particle vanishes. By (7.4), the 

WKB approximation fails at x0. Indeed, (7.4) is not satisfied in a small neighborhood around x0, and 
the WKB approximation fails in this small neighborhood. 

Let us study the behavior of the wavefunction near x0. We shall assume that the derivative of 
VΩxæ at x0 is different from zero, hence E ? VΩxæ is negative at one side of x0 and positive at the other 
side of x0. The point x0 is the dividing point between a classically accessible region and a classically 
inaccessible region. In classical mechanics, the particle cannot move into the region where its kinetic 
energy is negative, and must turn back as it arrives at x0. That is why the point x0 is called a turning 
point of the equation. As we may expect, the qualitative behavior of the quantum wavefunction goes 
through a transition near x0. More precisely, the WKB solution changes from an oscillatory behavior 
from one side of x0 to an exponential behavior at the other side of x0. However, we cannot continue 
the solution from one side of x0 to the other side of x0 with the WKB approximation alone. This is 
because the WKB solutions fail in a small neighborhood around x0. 

Fortunately, another approximation is available when x is close to x0, where we may make the 
approximation 

øE ? VΩxæ¿ u ?FΩx ? x0æ, 

with F equal to V rΩx0æ. This approximation is valid for 

|x ? x0| ò 1. (7.53) 
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Therefore, in the region of (7.53), the Schrodinger equation is approximately equal to 

d2` ? FR2Ωx ? x0æ` : 0, (7.54) 
dx2


which is related to the Air equation

d2u ? [u : 0

d[2 

by a linear transformation of the independent variable. Thus the Schrodinger equation in the 
region near the turning point is approximately a linear superposition of the solutions of the Airy 
functions. The constants of superposition are determined by the conditions imposed on the solution. 

By (7.4), the WKB approximation is valid in the region 

ô ??2/3, 

ô ?

?

|x ? x0| (7.55) 

where 
2 : |F|R2. 

By (7.53) and (7.55), there are two overlapping regions in which both the WKB solutions and the 
Airy function solutions are good approximations of the solution of (7.50). The first overlapping 
region is 

?2/3,1 ô x ? x0 (7.56a) # 

where x is to the right of x0, and the second overlapping region is # 
/31 ô x0 ? x ô ??2 , (7.56b) # 

where x is to the left of x0. The existence of such overlapping regions is crucial, as it enables us to 
join the WKB solutions from one side of the turning point to the other side of the turning point, 
using the Airy functions to interpolate through the region in which the WKB approximation fails. 

We first demonstrate how this is done when (7.50) has only one turning point. We shall assume 
that F is positive. In such a case, the kinetic energy of the particle is negative in the region x ; x0. In 
classical mechanics, this is the region inaccessible to the particle. Thus we require the solution ` of 
the Schrodinger equation to vanish rapidly as x increases in this region. The WKB solution satisfying 
this requirement is 

?Xx 
NΩx rædx r 

.
x0` WKBΩxæ : e (7.57) 
NΩxæ 

We may choose the solution to be a constant times the right side of (7.57), but this affects only the 
overall normalization of the wavefunction and we will leave it the way it is. The WKB solution fails 
as we continue it to the neighborhood of the turning point x0. When x is close to x0, we approximate 
(7.50) by (7.54). The two independent solutions of (7.54) are the Airy functions denoted by AiΩ[æ 
and BiΩ[æ, where 

/[ : ?2 3Ωx ? x0æ. (7.58) 
/

?
Note that a region of x with width unity corresponds to a region of [ with the width ?2 3. Since 

2/3 is a very large number, this region of [ is a very large region. When we study the function in the 
variable [, it is like studying the function with a magnifier. Therefore, the small region in x given by 
(7.54), in which the Airy function solution is valid, is a large region in [. 

As we will discuss in the next chapter, the asymptotic form of AiΩ[æ when the magnitude of [ is 
large is given by 

2
3 4 

AiΩ[æ i e?2

Z

[3

[

/2

1

/3

/4 
, [ î K, (7.59) 

2 

/2 + Zsin Ω?[æ3

Z Ω?[æ1
, [ î ?K. (7.60) 

/4 

Since AiΩ[æ vanishes exponentially when [ is large and positive, it satisfies the requirement we 
impose on the wavefunction. Thus the wavefunction in the neighborhood of the turning point x0 is 

`Ωxæ : cAiΩ[æ, (7.61) 

where c is a constant. To determine c, we match the solution (7.61) with the solution (7.57) in the 
overlapping region (7.56a) on the right side of x0. We will not give the details of the matching 
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process here. The result is that the solution in the neighborhood of the turning point x0 is given by 

Z2
`Ωxæ : AiΩ[æ. (7.62) 

1/3?
We use (7.62) to continue the solution to negative values of [. By (7.60), the solution (7.62) as [ is 
negative and large is 

2
3 4 .

/2 + Z 
2 sin Ω?[æ3

`Ωxæ u (7.63) 
1/3 /4? Ω?[æ1

We find the WKB solution in the region x 9 x0 by matching it with the solution (7.63). The 
matching is done in the overlapping region (7.56b). We find that the WKB solution valid for x 9 x0 

is 
x0 pΩxrædxr + ZX 
x 4 . 

2 sin 
(7.64) 

pΩxæ 

With (7.57), (7.62) and (7.64), we have an approximate solution of the Schrodinger equation 
x F ;

X 
x1 

x 
pΩxræ r + Z 

4 

pΩxæ 
, 

covering all values of , when the equation has one turning point with 0. 

2 sin dx
(7.68) 

which holds in the region x ; x1. 
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