LECTURE 4

Broken circuits, modular elements, and supersolvability

This lecture is concerned primarily with matroids and geometric lattices. Since the intersection lattice of a central arrangement is a geometric lattice, all our results can be applied to arrangements.

4.1. Broken circuits

For any geometric lattice L and $x \leq y$ in L, we have seen (Theorem 3.10) that $(-1)^{\mathrm{rk}(x, y)} \mu(x, y)$ is a positive integer. It is thus natural to ask whether this integer has a direct combinatorial interpretation. To this end, let M be a matroid on the set $S=\left\{u_{1}, \ldots, u_{m}\right\}$. Linearly order the elements of S, say $u_{1}<u_{2}<\cdots<u_{m}$. Recall that a circuit of M is a minimal dependent subset of S.

Definition 4.10. A broken circuit of M (with respect to the linear ordering \mathcal{O} of S) is a set $C-\{u\}$, where C is a circuit and u is the largest element of C (in the ordering (O). The broken circuit complex $\mathrm{BC}_{\mathcal{O}}(M)$ (or just $\mathrm{BC}(M)$ if no confusion will arise) is defined by

$$
\mathrm{BC}(M)=\{T \subseteq S: T \text { contains no broken circuit }\}
$$

Figure 1 shows two linear orderings \mathcal{O} and \mathcal{O}^{\prime} of the points of the affine matroid M of Figure 1 (where the ordering of the points is $1<2<3<4<5$). With respect to the first ordering \mathcal{O} the circuits are $123,345,1245$, and the broken circuits are $12,34,124$. With respect to the second ordering \mathcal{O}^{\prime} the circuits are $123,145,2345$, and the broken circuits are $12,14,234$.

It is clear that the broken circuit complex $\mathrm{BC}(M)$ is an abstract simplicial complex, i.e., if $T \in \mathrm{BC}(M)$ and $U \subseteq T$, then $U \in \mathrm{BC}(M)$. In Figure 1 we

Figure 1. Two linear orderings of the matroid M of Figure 1
have $\mathrm{BC}_{\mathcal{O}}(M)=\langle 135,145,235,245\rangle$, while $\mathrm{BC}_{\mathcal{O}^{\prime}}(M)=\langle 135,235,245,345\rangle$. These simplicial complexes have geometric realizations as follows:

Note that the two simplicial complexes $\mathrm{BC}_{\mathcal{O}}(M)$ and $\mathrm{BC}_{\mathcal{O}^{\prime}}(M)$ are not isomorphic (as abstract simplicial complexes); in fact, their geometric realizations are not even homeomorphic. On the other hand, if $f_{i}(\Delta)$ denotes the number of i dimensional faces (or faces of cardinality $i-1$) of the abstract simplicial complex Δ, then for Δ given by either $\mathrm{BC}_{\mathcal{O}}(M)$ or $\mathrm{BC}_{\mathcal{O}^{\prime}}(M)$ we have

$$
f_{-1}(\Delta)=1, f_{0}(\Delta)=5, f_{1}(\Delta)=8, f_{2}(\Delta)=4
$$

Note, moreover, that

$$
\chi_{M}(t)=t^{3}-5 t^{2}+8 t-4 .
$$

In order to generalize this observation to arbitrary matroids, we need to introduce a fair amount of machinery, much of it of interest for its own sake. First we give a fundamental formula, known as Philip Hall's theorem, for the Möbius function value $\mu(\hat{0}, \hat{1})$.

Lemma 4.4. Let P be a finite poset with $\hat{0}$ and $\hat{1}$, and with Möbius function μ. Let c_{i} denote the number of chains $\hat{0}=y_{0}<y_{1}<\cdots<y_{i}=\hat{1}$ in P. Then

$$
\mu(\hat{0}, \hat{1})=-c_{1}+c_{2}-c_{3}+\cdots
$$

Proof. We work in the incidence algebra $\mathcal{J}(P)$. We have

$$
\begin{aligned}
\mu(\hat{0}, \hat{1}) & =\zeta^{-1}(\hat{0}, \hat{1}) \\
& =(\delta+(\zeta-\delta))^{-1}(\hat{0}, \hat{1}) \\
& =\delta(\hat{0}, \hat{1})-(\zeta-\delta)(\hat{0}, \hat{1})+(\zeta-\delta)^{2}(\hat{0}, \hat{1})-\cdots
\end{aligned}
$$

This expansion is easily justified since $(\zeta-\delta)^{k}(\hat{0}, \hat{1})=0$ if the longest chain of P has length less than k. By definition of the product in $\mathcal{J}(P)$ we have $(\zeta-\delta)^{i}(\hat{0}, \hat{1})=c_{i}$, and the proof follows.

Note. Let P be a finite poset with $\hat{0}$ and $\hat{1}$, and let $P^{\prime}=P-\{\hat{0}, \hat{1}\}$. Define $\Delta\left(P^{\prime}\right)$ to be the set of chains of P^{\prime}, so $\Delta\left(P^{\prime}\right)$ is an abstract simplicial complex. The reduced Euler characteristic of a simplicial complex Δ is defined by

$$
\tilde{\chi}(P)=-f_{-1}+f_{0}-f_{1}+\cdots
$$

where f_{i} is the number of i-dimensional faces $F \in \Delta$ (or $\# F=i+1$). Comparing with Lemma 4.4 shows that

$$
\mu(\hat{0}, \hat{1})=\tilde{\chi}\left(\Delta\left(P^{\prime}\right)\right)
$$

Readers familiar with topology will know that $\tilde{\chi}(\Delta)$ has important topological significance related to the homology of Δ. It is thus natural to ask whether results

Figure 2. Three examples of edge-labelings
concerning Möbius functions can be generalized or refined topologically. Such results are part of the subject of "topological combinatorics," about which we will say a little more later.

Now let P be a finite graded poset with $\hat{0}$ and $\hat{1}$. Let

$$
\mathcal{E}(P)=\{(x, y): x \lessdot y \text { in } P\}
$$

the set of (directed) edges of the Hasse diagram of P.
Definition 4.11. An E-labeling of P is a map $\lambda: \mathcal{E}(P) \rightarrow \mathbb{P}$ such that if $x<y$ in P then there exists a unique saturated chain

$$
C: x=x_{0} \lessdot x_{1} \lessdot x_{1} \lessdot \cdots \lessdot x_{k}=y
$$

satisfying

$$
\lambda\left(x_{0}, x_{1}\right) \leq \lambda\left(x_{1}, x_{2}\right) \leq \cdots \leq \lambda\left(x_{k-1}, x_{k}\right)
$$

We call C the increasing chain from x to y.
Figure 2 shows three examples of posets P with a labeling of their edges, i.e. a map $\lambda: \mathcal{E}(P) \rightarrow \mathbb{P}$. Figure $2(\mathrm{a})$ is the boolean algebra B_{3} with the labeling $\lambda(S, S \cup\{i\})=i$. (The one-element subsets $\{i\}$ are also labelled with a small i.) For any boolean algebra B_{n}, this labeling is the archetypal example of an E labeling. The unique increasing chain from S to T is obtained by adjoining to S the elements of $T-S$ one at a time in increasing order. Figures 2(b) and (c) show two different E-labelings of the same poset P. These labelings have a number of different properties, e.g., the first has a chain whose edge labels are not all different, while every maximal chain label of Figure 2(c) is a permutation of $\{1,2\}$.

Theorem 4.11. Let λ be an E-labeling of P, and let $x \leq y$ in P. Let μ denote the Möbius function of P. Then $(-1)^{\operatorname{rk}(x, y)} \mu(x, y)$ is equal to the number of strictly decreasing saturated chains from x to y, i.e.,

$$
\begin{aligned}
(-1)^{\mathrm{rk}(x, y)} \mu(x, y)= \\
\#\left\{x=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{k}=y: \lambda\left(x_{0}, x_{1}\right)>\lambda\left(x_{1}, x_{2}\right)>\cdots>\lambda\left(x_{k-1}, x_{k}\right)\right\} .
\end{aligned}
$$

Proof. Since λ restricted to $[x, y]$ (i.e., to $\mathcal{E}([x, y]))$ is an E-labeling, we can assume $[x, y]=[\hat{0}, \hat{1}]=P$. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{j-1}\right\} \subseteq[n-1]$, with $a_{1}<a_{2}<\cdots<a_{j-1}$.

Define $\alpha_{P}(S)$ to be the number of chains $\hat{0}<y_{1}<\cdots<y_{j-1}<\hat{1}$ in P such that $\operatorname{rk}\left(y_{i}\right)=a_{i}$ for $1 \leq i \leq j-1$. The function α_{P} is called the flag f-vector of P.

Claim. $\alpha_{P}(S)$ is the number of maximal chains $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ such that

$$
\begin{equation*}
\lambda\left(x_{i-1}, x_{i}\right)>\lambda\left(x_{i}, x_{i+1}\right) \Rightarrow i \in S, 1 \leq i \leq n \tag{27}
\end{equation*}
$$

To prove the claim, let $\hat{0}=y_{0}<y_{1}<\cdots<y_{j-1}<y_{j}=\hat{1}$ with $\operatorname{rk}\left(y_{i}\right)=a_{i}$ for $1 \leq i \leq j-1$. By the definition of E-labeling, there exists a unique refinement

$$
\hat{0}=y_{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{a_{1}}=y_{1} \lessdot x_{a_{1}+1} \lessdot \cdots \lessdot x_{a_{2}}=y_{2} \lessdot \cdots \lessdot x_{n}=y_{j}=\hat{1}
$$

satisfying

$$
\begin{gathered}
\lambda\left(x_{0}, x_{1}\right) \leq \lambda\left(x_{1}, x_{2}\right) \leq \cdots \leq \lambda\left(x_{a_{1}-1}, x_{a_{1}}\right) \\
\lambda\left(x_{a_{1}}, x_{a_{1}+1}\right) \leq \lambda\left(x_{a_{1}+1}, x_{a_{1}+2}\right) \leq \cdots \leq \lambda\left(x_{a_{2}-1}, x_{a_{2}}\right)
\end{gathered}
$$

Thus if $\lambda\left(x_{i-1}, x_{i}\right)>\lambda\left(x_{i}, x_{i+1}\right)$, then $i \in S$, so (27) is satisfied. Conversely, given a maximal chain $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ satisfying the above conditions on λ, let $y_{i}=x_{a_{i}}$. Therefore we have a bijection between the chains counted by $\alpha_{P}(S)$ and the maximal chains satisfying (27), so the claim follows.

Now for $S \subseteq[n-1]$ define

$$
\begin{equation*}
\beta_{P}(S)=\sum_{T \subseteq S}(-1)^{\#(S-T)} \alpha_{P}(T) \tag{28}
\end{equation*}
$$

The function β_{P} is called the flag h-vector of P. A simple Inclusion-Exclusion argument gives

$$
\begin{equation*}
\alpha_{P}(S)=\sum_{T \subseteq S} \beta_{P}(T) \tag{29}
\end{equation*}
$$

for all $S \subseteq[n-1]$. It follows from the claim and equation (29) that $\beta_{P}(T)$ is equal to the number of maximal chains $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ such that $\lambda\left(x_{i}\right)>\lambda\left(x_{i+1}\right)$ if and only if $i \in T$. In particular, $\beta_{P}([n-1])$ is equal to the number of strictly decreasing maximal chains $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ of P, i.e.,

$$
\lambda\left(x_{0}, x_{1}\right)>\lambda\left(x_{1}, x_{2}\right)>\cdots>\lambda\left(x_{n-1}, x_{n}\right)
$$

Now by (28) we have

$$
\begin{aligned}
\beta_{P}([n-1]) & =\sum_{T \subseteq[n-1]}(-1)^{n-1-\# T} \alpha_{P}(T) \\
& =\sum_{k \geq 1} \sum_{\hat{0}=y_{0}<y_{1}<\cdots<y_{k}=\hat{1}}(-1)^{n-k} \\
& =(-1)^{n} \sum_{k \geq 1}(-1)^{k} c_{k},
\end{aligned}
$$

where c_{i} is the number of chains $\hat{0}=y_{0}<y_{1}<\cdots<y_{i}=\hat{1}$ in P. The proof now follows from Philip Hall's theorem (Lemma 4.4).

We come to the main result of this subsection, a combinatorial interpretation of the coefficients of the characteristic polynomial $\chi_{M}(t)$ for any matroid M.

Figure 3. The edge labeling $\tilde{\lambda}$ of a geometric lattice $L(M)$

Theorem 4.12. Let M be a matroid of rank n with a linear ordering $x_{1}<x_{2}<$ $\cdots<x_{m}$ of its points (so the broken circuit complex $B C(M)$ is defined), and let $0 \leq i \leq n$. Then

$$
(-1)^{i}\left[t^{n-i}\right] \chi_{M}(t)=f_{i-1}(\mathrm{BC}(M))
$$

Proof. We may assume M is simple since the "simplification" \widehat{M} has the same lattice of flats and same broken circuit complex as M (Exercise 1). The atoms x_{i} of $L(M)$ can then be identified with the points of M. Define a labeling $\tilde{\lambda}: \mathcal{E}(L(M)) \rightarrow$ \mathbb{P} as follows. Let $x \lessdot y$ in $L(M)$. Then set

$$
\begin{equation*}
\tilde{\lambda}(x, y)=\max \left\{i: x \vee x_{i}=y\right\} . \tag{30}
\end{equation*}
$$

Note that $\tilde{\lambda}(x, y)$ is defined since $L(M)$ is atomic.
As an example, Figure 3 shows the lattice of flats of the matroid M of Figure 1 with the edge labeling (30).

Claim 1. Define $\lambda: \mathcal{E}(L(M)) \rightarrow \mathbb{P}$ by

$$
\lambda(x, y)=m+1-\tilde{\lambda}(x, y)
$$

Then λ is an E-labeling.
To prove this claim, we need to show that for all $x<y$ in $L(M)$ there is a unique saturated chain $x=y_{0} \lessdot y_{1} \lessdot \cdots \lessdot y_{k}=y$ satisfying

$$
\tilde{\lambda}\left(y_{0}, y_{1}\right) \geq \tilde{\lambda}\left(y_{1}, y_{2}\right) \geq \cdots \geq \tilde{\lambda}\left(y_{k-1}, y_{k}\right)
$$

The proof is by induction on k. There is nothing to prove for $k=1$. Let $k>1$ and assume the assertion for $k-1$. Let

$$
j=\max \left\{i: x_{i} \leq y, x_{i} \not \leq x\right\}
$$

For any saturated chain $x=z_{0} \lessdot z_{1} \lessdot \cdots \lessdot z_{k}=y$, there is some i for which $x_{j} \not \leq z_{i}$ and $x_{j} \leq z_{i+1}$. Hence $\tilde{\lambda}\left(z_{i}, z_{i+1}\right)=j$. Thus if $\tilde{\lambda}\left(z_{0}, z_{1}\right) \geq \cdots \geq \tilde{\lambda}\left(z_{k-1}, z_{k}\right)$, then $\tilde{\lambda}\left(z_{0}, z_{1}\right)=j$. Moreover, there is a unique y_{1} satisfying $x=x_{0} \lessdot y_{1} \leq y$ and $\tilde{\lambda}\left(x_{0}, y_{1}\right)=j$, viz., $y_{1}=x_{0} \vee x_{j}$. (Note that $y_{1} \gtrdot x_{0}$ by semimodularity.)

By the induction hypothesis there exists a unique saturated chain $y_{\tilde{1}} \lessdot y_{2} \lessdot$ $\cdots \lessdot y_{k}=y$ satisfying $\tilde{\lambda}\left(y_{1}, y_{2}\right) \geq \cdots \geq \tilde{\lambda}\left(y_{k-1}, y_{k}\right)$. Since $\tilde{\lambda}\left(y_{0}, y_{1}\right)=j>\tilde{\lambda}\left(y_{1}, y_{2}\right)$, the proof of Claim 1 follows by induction.

Claim 2. The broken circuit complex $\mathrm{BC}(M)$ consists of all chain labels $\lambda(C)$, where C is a saturated increasing chain (with respect to $\tilde{\lambda}$) from $\hat{0}$ to some $x \in$ $L(M)$. Moreover, all such $\lambda(C)$ are distinct.

To prove the distinctness of the labels $\lambda(C)$, suppose that C is given by $\hat{0}=$ $y_{0} \lessdot y_{1} \lessdot \cdots \lessdot y_{k}$, with $\tilde{\lambda}(C)=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Then $y_{i}=y_{i-1} \vee x_{a_{i}}$, so C is the only chain with its label.

Now let C and $\tilde{\lambda}(C)$ be as in the previous paragraph. We claim that the set $\left\{x_{a_{1}}, \ldots, x_{a_{k}}\right\}$ contains no broken circuit. (We don't even require that C is increasing for this part of the proof.) Write $z_{i}=x_{a_{i}}$, and suppose to the contrary that $B=\left\{z_{i_{1}}, \ldots, z_{i_{j}}\right\}$ is a broken circuit, with $1 \leq i_{1}<\cdots<i_{j} \leq k$. Let $B \cup\left\{x_{r}\right\}$ be a circuit with $r>a_{i_{t}}$ for $1 \leq t \leq j$. Now for any circuit $\left\{u_{1}, \ldots, u_{h}\right\}$ and any $1 \leq i \leq h$ we have

$$
u_{1} \vee u_{2} \vee \cdots \vee u_{h}=u_{1} \vee \cdots \vee u_{i-1} \vee u_{i+1} \vee \cdots \vee u_{h}
$$

Thus

$$
z_{i_{1}} \vee z_{i_{2}} \vee \cdots \vee z_{i_{j-1}} \vee x_{r}=\bigvee_{z \in B} z=z_{i_{1}} \vee z_{i_{2}} \vee \cdots \vee z_{i_{j}}
$$

Then $y_{i_{j}-1} \vee x_{r}=y_{i_{j}}$, contradicting the maximality of the label $a_{i_{j}}$. Hence $\left\{x_{a_{1}}, \ldots, x_{a_{k}}\right\} \in \mathrm{BC}(M)$.

Conversely, suppose that $T:=\left\{x_{a_{1}}, \ldots, x_{a_{k}}\right\}$ contains no broken circuit, with $a_{1}<\cdots<a_{k}$. Let $y_{i}=x_{a_{1}} \vee \cdots \vee x_{a_{i}}$, and let C be the chain $\hat{0}:=y_{0} \lessdot y_{1} \lessdot \cdots \lessdot y_{k}$. (Note that C is saturated by semimodularity.) We claim that $\tilde{\lambda}(C)=\left(a_{1}, \ldots, a_{k}\right)$. If not, then $y_{i-1} \vee x_{j}=y_{i}$ for some $j>a_{i}$. Thus

$$
\operatorname{rk}(T)=\operatorname{rk}\left(T \cup\left\{x_{j}\right\}\right)=i .
$$

Since T is independent, $T \cup\left\{x_{j}\right\}$ contains a circuit Q satisfying $x_{j} \in Q$, so T contains a broken circuit. This contradiction completes the proof of Claim 2.

To complete the proof of the theorem, note that we have shown that $f_{i-1}(\mathrm{BC}(M))$ is the number of chains $C: \hat{0}=y_{0} \lessdot y_{1} \lessdot \cdots \lessdot y_{i}$ such that $\tilde{\lambda}(C)$ is strictly increasing, or equivalently, $\lambda(C)$ is strictly decreasing. Since λ is an E-labeling, the proof follows from Theorem 4.11.

Corollary 4.6. The broken circuit complex $\mathrm{BC}(M)$ is pure, i.e., every maximal face has the same dimension.

to be inserted.

Note (for readers with some knowledge of topology). (a) Let M be a matroid on the linearly ordered set $u_{1}<u_{2}<\cdots<u_{m}$. Note that $F \in \mathrm{BC}(M)$ if and only if $F \cup\left\{u_{m}\right\} \in \mathrm{BC}(M)$. Define the reduced broken circuit complex $\mathrm{BC}_{r}(M)$ by

$$
\mathrm{BC}_{r}(M)=\left\{F \in \mathrm{BC}(M): u_{m} \notin F\right\} .
$$

Thus

$$
\mathrm{BC}(M)=\mathrm{BC}_{r}(M) * u_{m},
$$

the join of $\mathrm{BC}_{r}(M)$ and the vertex u_{m}. Equivalently, $\mathrm{BC}(M)$ is a cone over $\mathrm{BC}_{r}(M)$ with apex u_{m}. As a consequence, $\mathrm{BC}(M)$ is contractible and therefore has the homotopy type of a point. A more interesting problem is to determine the topological nature of $\mathrm{BC}_{r}(M)$. It can be shown that $\mathrm{BC}_{r}(M)$ has the homotopy type of a wedge
of $\beta(M)$ spheres of dimension $\operatorname{rank}(M)-2$, where $(-1)^{\operatorname{rank}(M)-1} \beta(M)=\chi_{M}^{\prime}(1)$ (the derivative of $\chi_{M}(t)$ at $t=1$). See Exercise 21 for more information on $\beta(M)$.
(b) [to be inserted]

As an example of the applicability of our results on matroids and geometric lattices to arrangements, we have the following purely combinatorial description of the number of regions of a real central arrangement.

Corollary 4.7. Let \mathcal{A} be a central arrangement in \mathbb{R}^{n}, and let M be the matroid defined by the normals to $H \in \mathcal{A}$, i.e., the independent sets of M are the linearly independent normals. Then with respect to any linear ordering of the points of M, $r(\mathcal{A})$ is the total number of subsets of M that don't contain a broken circuit.
Proof. Immediate from Theorems 2.5 and 4.12.

4.2. Modular elements

We next discuss a situation in which the characteristic polynomial $\chi_{M}(t)$ factors in a nice way.
Definition 4.12. An element x of a geometric lattice L is modular if for all $y \in L$ we have

$$
\begin{equation*}
\operatorname{rk}(x)+\operatorname{rk}(y)=\operatorname{rk}(x \wedge y)+\operatorname{rk}(x \vee y) \tag{31}
\end{equation*}
$$

Example 4.9. Let L be a geometric lattice.
(a) $\hat{0}$ and $\hat{1}$ are clearly modular (in any finite lattice).
(b) We claim that atoms a are modular.

Proof. Suppose that $a \leq y$. Then $a \wedge y=a$ and $a \vee y=y$, so equation (31) holds. (We don't need that a is an atom for this case.) Now suppose $a \not \leq y$. By semimodularity, $\operatorname{rk}(a \vee y)=1+\operatorname{rk}(y)$, while $\operatorname{rk}(a)=1$ and $\operatorname{rk}(a \wedge y)=\operatorname{rk}(\hat{0})=0$, so again (31) holds.
(c) Suppose that $\operatorname{rk}(L)=3$. All elements of rank 0 , 1 , or 3 are modular by (a) and (b). Suppose that $\operatorname{rk}(x)=2$. Then x is modular if and only if for all elements $y \neq x$ and $\operatorname{rk}(y)=2$, we have that $\operatorname{rk}(x \wedge y)=1$.
(d) Let $L=B_{n}$. If $x \in B_{n}$ then $\operatorname{rk}(x)=\# x$. Moreover, for any $x, y \in B_{n}$ we have $x \wedge y=x \cap y$ and $x \vee y=x \cup y$. Since for any finite sets x and y we have

$$
\# x+\# y=\#(x \cap y)+\#(x \cup y)
$$

it follows that every element of B_{n} is modular. In other words, B_{n} is a modular lattice.
(e) Let q be a prime power and \mathbb{F}_{q} the finite field with q elements. Define $B_{n}(q)$ to be the lattice of subspaces, ordered by inclusion, of the vector space \mathbb{F}_{q}^{n}. Note that $B_{n}(q)$ is also isomorphic to the intersection lattice of the arrangement of all linear hyperplanes in the vector space $\mathbb{F}_{n}(q)$. Figure 4 shows the Hasse diagrams of $B_{2}(3)$ and $B_{3}(2)$.

Note that for $x, y \in B_{n}(q)$ we have $x \wedge y=x \cap y$ and $x \vee y=x+y$ (subspace sum). Clearly $B_{n}(q)$ is atomic: every vector space is the join (sum) of its one-dimensional subspaces. Moreover, $B_{n}(q)$ is graded of rank n, with rank function given by $\operatorname{rk}(x)=\operatorname{dim}(x)$. Since for any subspaces x and y we have

$$
\operatorname{dim}(x)+\operatorname{dim}(y)=\operatorname{dim}(x \cap y)+\operatorname{dim}(x+y)
$$

Figure 4. The lattices $B_{2}(3)$ and $B_{3}(2)$
it follows that L is a modular geometric lattice. Thus every $x \in L$ is modular.

Note. A projective plane R consists of a set (also denoted R) of points, and a collection of subsets of R, called lines, such that: (a) every two points lie on a unique line, (b) every two lines intersect in exactly one point, and (c) (non-degeneracy) there exist four points, no three of which are on a line. The incidence lattice $L(R)$ of R is the set of all points and lines of R, ordered by $p<L$ if $p \in L$, with $\hat{0}$ and $\hat{1}$ adjoined. It is an immediate consequence of the axioms that when R is finite, $L(R)$ is a modular geometric lattice of rank 3. It is an open (and probably intractable) problem to classify all finite projective planes. Now let P and Q be posets and define their direct product (or cartesian product) to be the set

$$
P \times Q=\{(x, y): x \in P, y \in Q\}
$$

ordered componentwise, i.e., $(x, y) \leq\left(x^{\prime}, y^{\prime}\right)$ if $x \leq x^{\prime}$ and $y \leq y^{\prime}$. It is easy to see that if P and Q are geometric (respectively, atomic, semimodular, modular) lattices, then so is $P \times Q$ (Exercise 7). It is a consequence of the "fundamental theorem of projective geometry" that every finite modular geometric lattice is a direct product of boolean algebras B_{n}, subspace lattices $B_{n}(q)$ for $n \geq 3$, lattices of rank 2 with at least five elements (which may be regarded as $B_{2}(q)$ for any $q \geq 2$) and incidence lattices of finite projective planes.
(f) The following result characterizes the modular elements of Π_{n}, which is the lattice of partitions of $[n]$ or the intersection lattice of the braid arrangement \mathcal{B}_{n}.

Proposition 4.9. A partition $\pi \in \Pi_{n}$ is a modular element of Π_{n} if and only if π has at most one nonsingleton block. Hence the number of modular elements of Π_{n} is $2^{n}-n$.

Proof. If all blocks of π are singletons, then $\pi=\hat{0}$, which is modular by (a). Assume that π has the block A with $r>1$ elements, and all other blocks are singletons. Hence the number $|\pi|$ of blocks of π is given by
$n-r+1$. For any $\sigma \in \Pi_{n}$, we have $\operatorname{rk}(\sigma)=n-|\sigma|$. Let $k=|\sigma|$ and

$$
j=\#\{B \in \sigma: A \cap B \neq \emptyset\} .
$$

Then $|\pi \wedge \sigma|=j+(n-r)$ and $|\pi \vee \sigma|=k-j+1$. Hence $\operatorname{rk}(\pi)=r-1$, $\operatorname{rk}(\sigma)=n-k, \operatorname{rk}(\pi \wedge \sigma)=r-j$, and $\operatorname{rk}(\pi \vee \sigma)=n-k+j-1$, so π is modular.

Conversely, let $\pi=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ with $\# B_{1}>1$ and $\# B_{2}>1$. Let $a \in B_{1}$ and $b \in B_{2}$, and set

$$
\sigma=\left\{\left(B_{1} \cup b\right)-a,\left(B_{2} \cup a\right)-b, B_{3}, \ldots, B_{k}\right\}
$$

Then

$$
\begin{array}{cc}
|\pi|=|\sigma|=k \\
\pi \wedge \sigma=\left\{a, b, B_{1}-a, B_{2}-b, \ldots, B_{3}, \ldots, B_{k}\right\} & \Rightarrow|\pi \wedge \sigma|=k+2 \\
\pi \vee \sigma=\left\{B_{1} \cup B_{2}, B_{3}, \ldots, B_{l}\right\} & \Rightarrow|\pi \vee \sigma|=k-1
\end{array}
$$

Hence $\operatorname{rk}(\pi)+\operatorname{rk}(\sigma) \neq \operatorname{rk}(\pi \wedge \sigma)+\operatorname{rk}(\pi \vee \sigma)$, so π is not modular.
In a finite lattice L, a complement of $x \in L$ is an element $y \in L$ such that $x \wedge y=\hat{0}$ and $x \vee y=\hat{1}$. For instance, in the boolean algebra B_{n} every element has a unique complement. (See Exercise 3 for the converse.) The following proposition collects some useful properties of modular elements. The proof is left as an exercise (Exercises 4-5).

Proposition 4.10. Let L be a geometric lattice of rank n.
(a) Let $x \in L$. The following four conditions are equivalent.
(i) x is a modular element of L.
(ii) If $x \wedge y=\hat{0}$, then $\operatorname{rk}(x)+\operatorname{rk}(y)=\operatorname{rk}(x \vee y)$.
(iii) If x and y are complements, then $\operatorname{rk}(x)+\operatorname{rk}(y)=n$.
(iv) All complements of x are incomparable.
(b) (transitivity of modularity) If x is a modular element of L and y is modular in the interval $[\hat{0}, x]$, then y is a modular element of L.
(c) If x and y are modular elements of L, then $x \wedge y$ is also modular.

The next result, known as the modular element factorization theorem [16], is our primary reason for defining modular elements - such an element induces a factorization of the characteristic polynomial.

Theorem 4.13. Let z be a modular element of the geometric lattice L of rank n. Write $\chi_{z}(t)=\chi_{[\hat{0}, z]}(t)$. Then

$$
\begin{equation*}
\chi_{L}(t)=\chi_{z}(t)\left[\sum_{y: y \wedge z=\hat{0}} \mu_{L}(y) t^{n-\mathrm{rk}(y)-\mathrm{rk}(z)}\right] \tag{32}
\end{equation*}
$$

Example 4.10. Before proceeding to the proof of Theorem 4.13, let us consider an example. The illustration below is the affine diagram of a matroid M of rank 3, together with its lattice of flats. The two lines (flats of rank 2) labelled x and y are modular by Example 4.9(c).

Hence by equation (32) $\chi_{M}(t)$ is divisible by $\chi_{x}(t)$. Moreover, any atom a of the interval $[\hat{0}, x]$ is modular, so $\chi_{x}(t)$ is divisible by $\chi_{a}(t)=t-1$. From this it is immediate (e.g., because the characteristic polynomial $\chi_{G}(t)$ of any geometric lattice G of rank n begins $x^{n}-a x^{n-1}+\cdots$, where a is the number of atoms of G) that $\chi_{x}(t)=(t-1)(t-5)$ and $\chi_{M}(t)=(t-1)(t-3)(t-5)$. On the other hand, since y is modular, $\chi_{M}(t)$ is divisible by $\chi_{y}(t)$, and we get as before $\chi_{y}(t)=(t-1)(t-3)$ and $\chi_{M}(t)=(t-1)(t-3)(t-5)$. Geometric lattices whose characteristic polynomial factors into linear factors in a similar way due to a maximal chain of modular elements are discussed further beginning with Definition 4.13.

Our proof of Theorem 4.13 will depend on the following lemma of Greene [11]. We give a somewhat simpler proof than Greene.

Lemma 4.5. Let L be a finite lattice with Möbius function μ, and let $z \in L$. The following identity is valid in the Möbius algebra $A(L)$ of L :

$$
\begin{equation*}
\sigma_{\hat{0}}:=\sum_{x \in L} \mu(x) x=\left(\sum_{v \leq z} \mu(v) v\right)\left(\sum_{y \wedge z=\hat{0}} \mu(y) y\right) . \tag{33}
\end{equation*}
$$

Proof. Let σ_{s} for $s \in L$ be given by (8). The right-hand side of equation (33) is then given by

$$
\left.\begin{array}{rl}
\sum_{\substack{v \leq z \\
y \wedge z=\hat{0}}} \mu(v) \mu(y)(v \vee y) & =\sum_{\substack{v \leq z \\
y \wedge z=\hat{0}}} \mu(v) \mu(y) \sum_{s \geq v \vee y} \sigma_{s} \\
& =\sum_{s} \sigma_{s} \sum_{\substack{v \leq s, v \leq z \\
y \leq s, y \wedge z=\hat{0}}} \mu(v) \mu(y) \\
& =\sum_{s} \sigma_{s}(\underbrace{\sum_{v \leq s \wedge z} \mu(v)}_{\delta_{\hat{0}, s \wedge z}})\left(\sum_{\substack{y \leq s \\
y \wedge z=\hat{0}}} \mu(y)\right) \\
& =\sum_{s \wedge z=\hat{0}} \sigma_{s}(\underbrace{y \wedge z=\hat{0}(\text { redundant })}_{\delta_{\hat{0}, s}}
\end{array}\right)
$$

Proof of Theorem 4.13. We are assuming that z is a modular element of the geometric lattice L.

Claim 1. Let $v \leq z$ and $y \wedge z=\hat{0}$ (so $v \wedge y=\hat{0})$. Then $z \wedge(v \vee y)=v$ (as illustrated below).

Proof of Claim 1. Clearly $z \wedge(v \vee y) \geq v$, so it suffices to show that $\operatorname{rk}(z \wedge(v \vee$ $y)) \leq \operatorname{rk}(v)$. Since z is modular we have

$$
\begin{aligned}
\operatorname{rk}(z \wedge(v \vee y)) & =\operatorname{rk}(z)+\operatorname{rk}(v \vee y)-\operatorname{rk}(z \vee y) \\
& =\operatorname{rk}(z)+\operatorname{rk}(v \vee y)-(\operatorname{rk}(z)+\operatorname{rk}(y)-\underbrace{\operatorname{rk}(z \wedge y)}_{0}) \\
& =\operatorname{rk}(v \vee y)-\operatorname{rk}(y) \\
& \leq(\operatorname{rk}(v)+\operatorname{rk}(y)-\underbrace{\operatorname{rk}(v \wedge y)}_{0})-\operatorname{rk}(y) \text { by semimodularity } \\
& =\operatorname{rk}(v),
\end{aligned}
$$

proving Claim 1.
Claim 2. With v and y as above, we have $\operatorname{rk}(v \vee y)=\operatorname{rk}(v)+\operatorname{rk}(y)$.
Proof of Claim 2. By the modularity of z we have

$$
\operatorname{rk}(z \wedge(v \vee y))+\operatorname{rk}(z \vee(v \vee y))=\operatorname{rk}(z)+\operatorname{rk}(v \vee y)
$$

By Claim 1 we have $\operatorname{rk}(z \wedge(v \vee y))=\operatorname{rk}(v)$. Moreover, again by the modularity of z we have

$$
\operatorname{rk}(z \vee(v \vee y))=\operatorname{rk}(z \vee y)=\operatorname{rk}(z)+\operatorname{rk}(y)-\operatorname{rk}(z \wedge y)=\operatorname{rk}(z)+\operatorname{rk}(y)
$$

It follows that $\operatorname{rk}(v)+\operatorname{rk}(y)=\operatorname{rk}(v \vee y)$, as claimed.
Now substitute $\mu(v) v \rightarrow \mu(v) t^{\mathrm{rk}(z)-\mathrm{rk}(v)}$ and $\mu(y) y \rightarrow \mu(y) t^{n-\mathrm{rk}(y)-\mathrm{rk}(z)}$ in the right-hand side of equation (33). Then by Claim 2 we have

$$
v y \rightarrow t^{n-\mathrm{rk}(v)-\mathrm{rk}(y)}=t^{n-\mathrm{rk}(v \vee y)}
$$

Now $v \vee y$ is just $v y$ in the Möbius algebra $A(L)$. Hence if we further substitute $\mu(x) x \rightarrow \mu(x) t^{n-\mathrm{rk}(x)}$ in the left-hand side of (33), then the product will be preserved. We thus obtain

$$
\underbrace{\sum_{x \in L} \mu(x) t^{n-\mathrm{rk}(x)}}_{\chi_{L}(t)}=(\underbrace{\sum_{v \leq z} \mu(v) t^{\mathrm{rk}(z)-\mathrm{rk}(v)}}_{\chi_{z}(t)})\left(\sum_{y \wedge z=\hat{0}} \mu(y) t^{n-\mathrm{rk}(y)-\mathrm{rk}(z)}\right)
$$

as desired.
Corollary 4.8. Let L be a geometric lattice of rank n and a an atom of L. Then

$$
\chi_{L}(t)=(t-1) \sum_{y \wedge a=\hat{0}} \mu(y) t^{n-1-\operatorname{rk}(y)}
$$

Proof. The atom a is modular (Example 4.9(b)), and $\chi_{a}(t)=t-1$.
Corollary 4.8 provides a nice context for understanding the operation of coning defined in Chapter 1, in particular, Exercise 2.1. Recall that if \mathcal{A} is an affine arrangement in K^{n} given by the equations

$$
L_{1}(x)=a_{1}, \ldots, L_{m}(x)=a_{m}
$$

then the cone $x \mathcal{A}$ is the arrangement in $K^{n} \times K$ (where y denotes the last coordinate) with equations

$$
L_{1}(x)=a_{1} y, \ldots, L_{m}(x)=a_{m} y, y=0
$$

Let H_{0} denote the hyperplane $y=0$. It is easy to see by elementary linear algebra that

$$
L(\mathcal{A}) \cong L(c \mathcal{A})-\left\{x \in L(\mathcal{A}): x \geq H_{0}\right\}=L(\mathcal{A})-L\left(\mathcal{A}^{H_{0}}\right)
$$

Now H_{0} is a modular element of $L(\mathcal{A})$ (since it's an atom), so Corollary 4.8 yields

$$
\begin{aligned}
\chi_{c \mathcal{A}}(t)=(t-1) \sum_{y \nsupseteq H_{0}} \mu(y) t^{(n+1)-1-\mathrm{rk}(y)} & \\
& =(t-1) \chi_{\mathcal{A}}(t) .
\end{aligned}
$$

There is a left inverse to the operation of coning. Let \mathcal{A} be a nonempty linear arrangement in K^{n+1}. Let $H_{0} \in \mathcal{A}$. Choose coordinates $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ in K^{n+1} so that $H_{0}=\operatorname{ker}\left(x_{0}\right)$. Let \mathcal{A} be defined by the equations

$$
x_{0}=0, L_{1}\left(x_{0}, \ldots, x_{n}\right)=0, \ldots, L_{m}\left(x_{0}, \ldots, x_{n}\right)=0
$$

Define the deconing $c^{-1} \mathcal{A}$ (with respect to H_{0}) in K^{n} by the equations

$$
L_{1}\left(1, x_{1}, \ldots, x_{n}\right)=0, \ldots L_{m}\left(1, x_{1}, \ldots, x_{n}\right)=0
$$

Clearly $c\left(c^{-1} \mathcal{A}\right)=\mathcal{A}$ and $L\left(c^{-1} \mathcal{A}\right) \cong L(\mathcal{A})-\left\{x \in L(\mathcal{A}): x \geq H_{0}\right\}$.

4.3. Supersolvable lattices

For some geometric lattices L, there are "enough" modular elements to give a factorization of $\chi_{L}(t)$ into linear factors.

Definition 4.13. A geometric lattice L is supersolvable if there exists a modular maximal chain, i.e., a maximal chain $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ such that each x_{i} is modular. A central arrangement \mathcal{A} is supersolvable if its intersection lattice $L_{\mathcal{A}}$ is supersolvable.

Note. Let $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ be a modular maximal chain of the geometric lattice L. Clearly then each x_{i-1} is a modular element of the interval $\left[\hat{0}, x_{i}\right]$. The converse follows from Proposition 4.10(b): if $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ is a maximal chain for which each x_{i-1} is modular in $\left[\hat{0}, x_{i}\right]$, then each x_{i} is modular in L.

Note. The term "supersolvable" comes from group theory. A finite group Γ is supersolvable if and only if its subgroup lattice contains a maximal chain all of whose elements are normal subgroups of Γ. Normal subgroups are "nice" analogues of modular elements; see [17, Example 2.5] for further details.

Corollary 4.9. Let L be a supersolvable geometric lattice of rank n, with modular maximal chain $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$. Let T denote the set of atoms of L, and set

$$
\begin{equation*}
e_{i}=\#\left\{a \in T: a \leq x_{i}, a \not \leq x_{i-1}\right\} \tag{34}
\end{equation*}
$$

Then $\chi_{L}(t)=\left(t-e_{1}\right)\left(t-e_{2}\right) \cdots\left(t-e_{n}\right)$.
Proof. Since x_{n-1} is modular, we have

$$
y \wedge x_{n-1}=\hat{0} \Leftrightarrow y \in T \text { and } y \not \leq x_{n-1}, \text { or } y=\hat{0}
$$

By Theorem 4.13 we therefore have

$$
\chi_{L}(t)=\chi_{x_{n-1}}(t)\left[\sum_{\substack{a \in T \\ a \unrhd x_{n-1}}} \mu(a) t^{n-\mathrm{rk}(a)-\mathrm{rk}\left(x_{n-1}\right)}+\mu(\hat{0}) t^{n-\mathrm{rk}(\hat{0})-\mathrm{rk}\left(x_{n-1}\right)}\right]
$$

Since $\mu(a)=-1, \mu(\hat{0})=1, \operatorname{rk}(a)=1, \operatorname{rk}(\hat{0})=0$, and $\operatorname{rk}\left(x_{n-1}\right)=n-1$, the expression in brackets is just $t-e_{n}$. Now continue this with L replaced by [$\hat{0}, x_{n-1}$] (or use induction on n).

Note. The positive integers e_{1}, \ldots, e_{n} of Corollary 4.9 are called the exponents of L.

Example 4.11. (a) Let $L=B_{n}$, the boolean algebra of rank n. By Example $4.9(\mathrm{~d})$ every element of B_{n} is modular. Hence B_{n} is supersolvable. Clearly each $e_{i}=1$, so $\chi_{B_{n}}(t)=(t-1)^{n}$.
(b) Let $L=B_{n}(q)$, the lattice of subspaces of \mathbb{F}_{n}^{q}. By Example 4.9(e) every element of $B_{n}(q)$ is modular, so $B_{n}(q)$ is supersolvable. If $\left[\begin{array}{c}k \\ j\end{array}\right]$ denotes the number of j-dimensional subspaces of a k-dimensional vector space over \mathbb{F}_{q}, then

$$
\begin{aligned}
e_{i} & =\left[\begin{array}{c}
i \\
1
\end{array}\right]-\left[\begin{array}{c}
i-1 \\
1
\end{array}\right] \\
& =\frac{q^{i}-1}{q-1}-\frac{q^{i-1}-1}{q-1} \\
& =q^{i-1}
\end{aligned}
$$

Hence

$$
\chi_{B_{n}(q)}(t)=(t-1)(t-q)\left(t-q^{2}\right) \cdots\left(t-q^{n-1}\right)
$$

In particular, setting $t=0$ gives

$$
\mu_{B_{n}(q)}(\hat{1})=(-1)^{n} q^{\binom{n}{2}}
$$

Note. The expression $\left[\begin{array}{c}k \\ j\end{array}\right]$ is called a q-binomial coefficient. It is a polynomial in q with many interesting properties. For the most basic properties, see e.g. [18, pp. 27-30].
(c) Let $L=\Pi_{n}$, the lattice of partitions of the set $[n]$ (a geometric lattice of rank $n-1$). By Proposition 4.9, a maximal chain of Π_{n} is modular if and only if it has the form $\hat{0}=\pi_{0} \lessdot \pi_{1} \lessdot \cdots \lessdot \pi_{n-1}=\hat{1}$, where π_{i} for $i>0$ has exactly one nonsingleton block B_{i} (necessarily with $i+1$ elements), with $B_{1} \subset B_{2} \cdots \subset B_{n-1}=[n]$. In particular, Π_{n} is supersolvable and has exactly $n!/ 2$ modular chains for $n>1$. The atoms covered by π_{i} are the partitions with one nonsingleton block $\{j, k\} \subseteq B_{i}$. Hence π_{i} lies above exactly $\binom{i+1}{2}$ atoms, so

$$
e_{i}=\binom{i+1}{2}-\binom{i}{2}=i
$$

It follows that $\chi_{\Pi_{n}}(t)=(t-1)(t-2) \cdots(t-n+1)$ and $\mu_{\Pi_{n}}(\hat{1})=$ $(-1)^{n-1}(n-1)$!. Compare Corollary 2.2. The polynomials $\chi_{\mathcal{B}_{n}}(t)$ and $\chi_{\Pi_{n}}(t)$ differ by a factor of t because $\mathcal{B}_{n}(t)$ is an arrangement in K^{n} of
rank $n-1$. In general, if \mathcal{A} is an arrangement and $\operatorname{ess}(\mathcal{A})$ its essentialization, then

$$
t^{\operatorname{rk}(\operatorname{ess}(\mathcal{A}))} \chi_{\mathcal{A}}(t)=t^{\operatorname{rk}(\mathcal{A})} \chi_{\operatorname{ess}(\mathcal{A})}(t)
$$

(See Lecture 1, Exercise 2.)
Note. It is natural to ask whether there is a more general class of geometric lattices L than the supersolvable ones for which $\chi_{L}(t)$ factors into linear factors (over \mathbb{Z}). There is a profound such generalization due to Terao $[\mathbf{2 2}]$ when L is an intersection poset of a linear arrangement \mathcal{A} in K^{n}. Write $K[x]=K\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathcal{T}(\mathcal{A})=\left\{\left(p_{1}, \ldots, p_{n}\right) \in K[x]^{n}: p_{i}(H) \subseteq H \text { for all } H \in \mathcal{A}\right\}
$$

Here we are regarding $\left(p_{1}, \ldots, p_{n}\right): K^{n} \rightarrow K^{n}$, viz., if $\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$, then

$$
\left(p_{1}, \ldots, p_{n}\right)\left(a_{1}, \ldots, a_{n}\right)=\left(p_{1}\left(a_{1}, \ldots, a_{n}\right), \ldots, p_{n}\left(a_{1}, \ldots, a_{n}\right)\right)
$$

The $K[x]$-module structure $K[x] \times \mathcal{T}(\mathcal{A}) \rightarrow \mathcal{T}(\mathcal{A})$ is given explicitly by

$$
q \cdot\left(p_{1}, \ldots, p_{n}\right)=\left(q p_{1}, \ldots, q p_{n}\right)
$$

Note, for instance, that we always have $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{T}(\mathcal{A})$. Since \mathcal{A} is a linear arrangement, $\mathcal{T}(\mathcal{A})$ is indeed a $K[x]$-module. (We have given the most intuitive definition of the module $\mathcal{T}(\mathcal{A})$, though it isn't the most useful definition for proofs.) It is easy to see that $\mathcal{T}(\mathcal{A})$ has rank n as a $K[x]$-module, i.e., $\mathcal{T}(\mathcal{A})$ contains n, but not $n+1$, elements that are linearly independent over $K[x]$. We say that \mathcal{A} is a free arrangement if $\mathcal{T}(\mathcal{A})$ is a free $K[x]$-module, i.e., there exist $Q_{1}, \ldots, Q_{n} \in$ $\mathcal{T}(\mathcal{A})$ such that every element $Q \in \mathcal{T}(\mathcal{A})$ can be uniquely written in the form $Q=q_{1} Q_{1}+\cdots+q_{n} Q_{n}$, where $q_{i} \in K[x]$. It is easy to see that if $\mathcal{T}(\mathcal{A})$ is free, then the basis $\left\{Q_{1}, \ldots, Q_{n}\right\}$ can be chosen to be homogeneous, i.e., all coordinates of each Q_{i} are homogeneous polynomials of the same degree d_{i}. We then write $d_{i}=\operatorname{deg} Q_{i}$. It can be shown that supersolvable arrangements are free, but there are also nonsupersolvable free arrangements. The property of freeness seems quite subtle; indeed, it is unknown whether freeness is a matroidal property, i.e., depends only on the intersection lattice $L_{\mathcal{A}}$ (regarding the ground field K as fixed). The remarkable "factorization theorem" of Terao is the following.

Theorem 4.14. Suppose that $\mathcal{T}(\mathcal{A})$ is free with homogeneous basis Q_{1}, \ldots, Q_{n}. If $\operatorname{deg} Q_{i}=d_{i}$ then

$$
\chi_{\mathcal{A}}(t)=\left(t-d_{1}\right)\left(t-d_{2}\right) \cdots\left(t-d_{n}\right)
$$

We will not prove Theorem 4.14 here. A good reference for this subject is $[\mathbf{1 3}$, Ch. 4].

Returning to supersolvability, we can try to characterize the supersolvable property for various classes of geometric lattices. Let us consider the case of the bond lattice L_{G} of the graph G. A graph H with at least one edge is doubly connected if it is connected and remains connected upon the removal of any vertex (and all incident edges). A maximal doubly connected subgraph of a graph G is called a block of G. For instance, if G is a forest then its blocks are its edges. Two different blocks of G intersect in at most one vertex. Figure 5 shows a graph with eight blocks, five of which consist of a single edge. The following proposition is straightforward to prove (Exercise 16).

Figure 5. A graph with eight blocks
Proposition 4.11. Let G be a graph with blocks G_{1}, \ldots, G_{k}. Then

$$
L_{G} \cong L_{G_{1}} \times \cdots \times L_{G_{k}} .
$$

It is also easy to see that if L_{1} and L_{2} are geometric lattices, then L_{1} and L_{2} are supersolvable if and only if $L_{1} \times L_{2}$ is supersolvable (Exercise 18). Hence in characterizing supersolvable graphs G (i.e., graphs whose bond lattice L_{G} is supersolvable) we may assume that G is doubly connected. Note that for any connected (and hence a fortiori doubly connected) graph G, any coatom π of L_{G} has exactly two blocks.
Proposition 4.12. Let G be a doubly connected graph, and let $\pi=\{A, B\}$ be a coatom of the bond lattice L_{G}, where $\# A \leq \# B$. Then π is a modular element of L_{G} if and only if $\# A=1$, say $A=\{v\}$, and the neighborhood $N(v)$ (the set of vertices adjacent to v) forms a clique (i.e., any two distinct vertices of $N(v)$ are adjacent).

Proof. The proof parallels that of Proposition 4.9, which is a special case. Suppose that $\# A>1$. Since G is doubly connected, there exist $u, v \in A$ and $u^{\prime}, v^{\prime} \in B$ such that $u \neq v, u^{\prime} \neq v^{\prime}, u u^{\prime} \in E(G)$, and $v v^{\prime} \in E(G)$. Set $\sigma=\left\{\left(A \cup u^{\prime}\right)-v,(B \cup v)-u^{\prime}\right\}$. If G has n vertices then $\operatorname{rk}(\pi)=\operatorname{rk}(\sigma)=n-2, \operatorname{rk}(\pi \vee \sigma)=n-1$, and $\operatorname{rk}(\pi \wedge \sigma)=n-4$. Hence π is not modular.

Assume then that $A=\{v\}$. Suppose that $a v, b v \in E(G)$ but $a b \notin E(G)$. We need to show that π is not modular. Let $\sigma=\{A-\{a, b\},\{a, b, v\}\}$. Then

$$
\begin{gathered}
\sigma \vee \pi=\hat{1}, \quad \sigma \wedge \pi=\{A-\{a, b\}, a, b, v\} \\
\operatorname{rk}(\sigma)=\operatorname{rk}(\pi)=n-2, \quad \operatorname{rk}(\sigma \vee \pi)=n-1, \quad \operatorname{rk}(\sigma \wedge \pi)=n-4 .
\end{gathered}
$$

Hence π is not modular.
Conversely, let $\pi=\{A, v\}$. Assume that if $a v, b v \in E(G)$ then $a b \in E(G)$. It is then straightforward to show (Exercise 8) that π is modular, completing the proof.

As an immediate consequence of Propositions 4.10(b) and 4.12 we obtain a characterization of supersolvable graphs.

Corollary 4.10. A graph G is supersolvable if and only if there exists an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of its vertices such that if $i<k, j<k, v_{i} v_{k} \in E(G)$ and $v_{j} v_{k} \in E(G)$,
then $v_{i} v_{j} \in E(G)$. Equivalently, in the restriction of G to the vertices $v_{1}, v_{2}, \ldots, v_{i}$, the neighborhood of v_{i} is a clique.

Note. Supersolvable graphs G had appeared earlier in the literature under the names chordal, rigid circuit, or triangulated graphs. One of their many characterizations is that any circuit of length at least four contains a chord. Equivalently, no induced subgraph of G is a k-cycle for $k \geq 4$.

