
LECTURE 4 
Broken circuits, modular elements, and supersolvability 

This lecture is concerned primarily with matroids and geometric lattices. Since 
the intersection lattice of a central arrangement is a geometric lattice, all our results 
can be applied to arrangements. 

4.1. Broken circuits 

For any geometric lattice L and x → y in L, we have seen (Theorem 3.10) that 
(−1)rk(x,y)µ(x, y) is a positive integer. It is thus natural to ask whether this integer 
has a direct combinatorial interpretation. To this end, let M be a matroid on the 
set S = {u1, . . . , u . Linearly order the elements of S, say u1 < u2 < < um.m} · · · 
Recall that a circuit of M is a minimal dependent subset of S. 

Definition 4.10. A broken circuit of M (with respect to the linear ordering O of 
S) is a set C − {u}, where C is a circuit and u is the largest element of C (in the 
ordering O). The broken circuit complex BCO(M) (or just BC(M) if no confusion 
will arise) is defined by 

BC(M) = {T ∗ S : T contains no broken circuit}. 
Figure 1 shows two linear orderings O and O� of the points of the affine matroid 

M of Figure 1 (where the ordering of the points is 1 < 2 < 3 < 4 < 5). With respect 
to the first ordering O the circuits are 123, 345, 1245, and the broken circuits are 
12, 34, 124. With respect to the second ordering O� the circuits are 123, 145, 2345, 
and the broken circuits are 12, 14, 234. 

It is clear that the broken circuit complex BC(M) is an abstract simplicial 
complex, i.e., if T ≤ BC(M) and U ∗ T , then U ≤ BC(M). In Figure 1 we 
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Figure 1. Two linear orderings of the matroid M of Figure 1 
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have BCO(M) = 135, 145, 235, 245 , while BCO� (M) = 135, 235, 245, 345 . These 
simplicial complexes have geometric realizations as follows: 
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Note that the two simplicial complexes BCO(M) and BCO� (M) are not iso
morphic (as abstract simplicial complexes); in fact, their geometric realizations are 
not even homeomorphic. On the other hand, if fi(�) denotes the number of i-
dimensional faces (or faces of cardinality i − 1) of the abstract simplicial complex 
�, then for � given by either BCO(M) or BCO� (M) we have 

f−1(�) = 1, f0(�) = 5, f1(�) = 8, f2(�) = 4. 

Note, moreover, that 

ψM (t) = t3 − 5t2 + 8t− 4. 

In order to generalize this observation to arbitrary matroids, we need to introduce 
a fair amount of machinery, much of it of interest for its own sake. First we give 
a fundamental formula, known as Philip Hall’s theorem, for the Möbius function 

0, 1). value µ(ˆ ˆ

Lemma 4.4. Let P be a finite poset with ˆ 1, and with M¨0 and ˆ obius function µ. 
Let ci denote the number of chains 0̂ = y0 < y1 < i 1 in P . Then· · · < y = ˆ

µ(ˆ ˆ0, 1) = −c1 + c2 − c3 + .· · · 
Proof. We work in the incidence algebra I(P ). We have 

µ(ˆ ˆ −1(ˆ ˆ0, 1) = α 0, 1) 
ˆ= (ζ + (α − ζ))−1(0̂, 1) 

= ζ(ˆ ˆ 0, 1) + (α − ζ)2(ˆ0, 1) − (α − ζ)(ˆ ˆ 0, 1̂) − · · · . 
This expansion is easily justified since (α−ζ)k (ˆ ˆ

length less than k. By definition of the product in I(P ) we have (α − ζ)i(ˆ
0, 1) = 0 if the longest chain of P has 

ˆ0, 1) = ci,

and the proof follows. �


0 and ˆ 0, ˆ . Define
Note. Let P be a finite poset with ˆ 1, and let P � = P − {ˆ 1}
�(P �) to be the set of chains of P �, so �(P �) is an abstract simplicial complex. The 
reduced Euler characteristic of a simplicial complex � is defined by 

ψ̃(P ) = −f−1 + f0 − f1 + · · · , 
where fi is the number of i-dimensional faces F ≤ � (or #F = i+ 1). Comparing 
with Lemma 4.4 shows that 

µ(ˆ ˆ ψ0, 1) = ˜(�(P �)). 

Readers familiar with topology will know that ˜(�) has important topological sig-ψ
nificance related to the homology of �. It is thus natural to ask whether results 
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Figure 2. Three examples of edge-labelings 

concerning Möbius functions can be generalized or refined topologically. Such re
sults are part of the subject of “topological combinatorics,” about which we will 
say a little more later. 

Now let P be a finite graded poset with ˆ 1. Let0 and ˆ

E(P ) = {(x, y) : x � y in P }, 
the set of (directed) edges of the Hasse diagram of P . 

Definition 4.11. An E-labeling of P is a map ϕ : E(P ) ∃ P such that if x < y in 
P then there exists a unique saturated chain 

C : x = x0 � x1 � x1 � � xk = y· · ·
satisfying 

ϕ(x0, x1) → ϕ(xk−1 , xk ).ϕ(x1, x2) → · · · → 

We call C the increasing chain from x to y. 

Figure 2 shows three examples of posets P with a labeling of their edges, i.e. 
a map ϕ : E(P ) ∃ P. Figure 2(a) is the boolean algebra B3 with the labeling 
ϕ(S, S ∅ {i}) = i. (The one-element subsets {i} are also labelled with a small 
i.) For any boolean algebra Bn, this labeling is the archetypal example of an E-
labeling. The unique increasing chain from S to T is obtained by adjoining to S 
the elements of T −S one at a time in increasing order. Figures 2(b) and (c) show 
two different E-labelings of the same poset P . These labelings have a number of 
different properties, e.g., the first has a chain whose edge labels are not all different, 
while every maximal chain label of Figure 2(c) is a permutation of {1, 2}. 
Theorem 4.11. Let ϕ be an E-labeling of P , and let x → y in P . Let µ denote 
the Möbius function of P . Then (−1)rk(x,y)µ(x, y) is equal to the number of strictly 
decreasing saturated chains from x to y, i.e., 

(−1)rk(x,y)µ(x, y) = 

#{x = x0 � x1 � � xk = y : ϕ(x0, x1) > ϕ(x1, x2) > > ϕ(xk−1 , xk )}.· · · · · · 
Proof. Since ϕ restricted to [x, y] (i.e., to E([x, y])) is an E-labeling, we can assume 
[x, y] = [ˆ ˆ0, 1] = P . Let S = {a1, a2, . . . , aj−1} ∗ [n − 1], with a1 < a2 < · · · < aj−1. 
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Define κP (S) to be the number of chains 0̂ < y1 < 1 in P such that · · · < yj−1 < ˆ

rk(yi) = ai for 1 → i → j − 1. The function κP is called the flag f -vector of P . 
0 = x0 � x1 � � xn = ˆClaim. κP (S) is the number of maximal chains ˆ	 1 such · · ·

that 

(27) ϕ(xi−1 , xi) > ϕ(xi , xi+1) ⊆ i ≤ S, 1 i n.→ → 

To prove the claim, let ˆ = y0 < y1 < < yj = 1 with rk(yi) = ai for0 · · · < yj−1 ˆ

1 → i → j − 1. By the definition of E-labeling, there exists a unique refinement 

0 = y0 = x0 � x1 � � xa1 = y1 � xa1 +1 � � xa2 = y2 � � xn = yj = ˆˆ	 1· · ·	 · · · · · ·
satisfying 

ϕ(x0, x1) → ϕ(xa1 −1, xa1 )ϕ(x1, x2) → · · · → 

ϕ(xa1 , xa1 +1) → ϕ(xa1 +1, x ϕ(xa2 −1, xa2 )a1 +2) → · · · → 

· · · 
Thus if ϕ(xi−1 , xi) > ϕ(xi , xi+1), then i ≤ S, so (27) is satisfied. Conversely, given 

0 = x0 � x1 � � xn = ˆa maximal chain ˆ	 1 satisfying the above conditions on ϕ,· · ·
let yi = xai . Therefore we have a bijection between the chains counted by κP (S) 
and the maximal chains satisfying (27), so the claim follows. 

Now for S ∗ [n− 1] define 

(28)	 λP (S) = 
� 

(−1)#(S−T )κP (T ). 
T →S 

The function λP is called the flag h-vector of P . A simple Inclusion-Exclusion 
argument gives 

(29)	 κP (S) = 
� 

λP (T ), 
T →S 

for all S ∗ [n−1]. It follows from the claim and equation (29) that λP (T ) is equal to 
0 = x0 � x1 � � xn = ˆthe number of maximal chains ˆ	 1 such that ϕ(xi ) > ϕ(xi+1 )· · ·

if and only if i ≤ T . In particular, λP ([n − 1]) is equal to the number of strictly 
0 = x0 � x1 � � xn = ˆdecreasing maximal chains ˆ	 1 of P , i.e., · · ·

ϕ(x0, x1) > ϕ(x1, x2) > > ϕ(xn−1, xn).· · · 
Now by (28) we have 

λP ([n− 1]) = 
� 

(−1)n−1−#T κP (T ) 
T →[n−1] 

= 
� � 

(−1)n−k 

k∗1 ˆ 10=y0 <y1 <···<yk =ˆ

= (−1)n 
�

(−1)k ck, 
k∗1 

where ci is the number of chains 0̂ = y0 < y1 < 1 in P . The proof now · · · < yi = ˆ

follows from Philip Hall’s theorem (Lemma 4.4).	 � 
We come to the main result of this subsection, a combinatorial interpretation 

of the coefficients of the characteristic polynomial ψM (t) for any matroid M . 
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Figure 3. The edge labeling �̃ of a geometric lattice L(M ) 

Theorem 4.12. Let M be a matroid of rank n with a linear ordering x1 < x2 < 
< xm of its points (so the broken circuit complex BC(M) is defined), and let · · · 

0 i n. Then→ → 
(−1)i[tn−i]ψM (t) = fi−1(BC(M)). 

Proof. We may assume M is simple since the “simplification” �M has the same 
lattice of flats and same broken circuit complex as M (Exercise 1). The atoms xi of 
L(M) can then be identified with the points of M . Define a labeling ϕ̃ : E(L(M)) ∃
P as follows. Let x� y in L(M). Then set 

˜(30) ϕ(x, y) = max{i : x ⇒ xi = y}. 
Note that ϕ̃(x, y) is defined since L(M) is atomic. 

As an example, Figure 3 shows the lattice of flats of the matroid M of Figure 1 
with the edge labeling (30). 

Claim 1. Define ϕ : E(L(M)) ∃ P by 

ϕ(x, y) = m+ 1 − ϕ̃(x, y). 

Then ϕ is an E-labeling. 
To prove this claim, we need to show that for all x < y in L(M) there is a 

unique saturated chain x = y0 � y1 � � yk = y satisfying· · ·
ϕ̃(y0, y1) ⊂ ˜ ϕ(yk−1, yk).ϕ(y1, y2) ⊂ · · · ⊂ ˜

The proof is by induction on k. There is nothing to prove for k = 1. Let k > 1 and 
assume the assertion for k − 1. Let 

j = max{i : xi → y, xi .⇔→ x}
For any saturated chain x = z0 � z1 � � zk = y, there is some i for which · · · 
xj ⇔→ zi and xj → zi+1. Hence ϕ̃(zi, zi+1) = j. Thus if ˜ ϕ(zk−1, zk),ϕ(z0, z1) ⊂ · · · ⊂ ˜

then ϕ̃(z0, z1) = j. Moreover, there is a unique y1 satisfying x = x0 � y1 → y and 
ϕ̃(x0, y1) = j, viz., y1 = x0 ⇒ xj . (Note that y1 � x0 by semimodularity.) 
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By the induction hypothesis there exists a unique saturated chain y1 � y2 � 
ϕ(y0, y1) = j > ˜� yk = y satisfying ˜ ϕ(yk−1, yk). Since ˜ ϕ(y1, y2),· · · ϕ(y1, y2) ⊂ · · · ⊂ ˜

the proof of Claim 1 follows by induction. 
Claim 2. The broken circuit complex BC(M) consists of all chain labels ϕ(C), 

where C is a saturated increasing chain (with respect to ˜ 0 to some x ≤ϕ) from ˆ

L(M). Moreover, all such ϕ(C) are distinct. 
To prove the distinctness of the labels ϕ(C), suppose that C is given by ˆ =0 

y0 � y1 � � yk, with ϕ̃(C) = (a1, a2, . . . , ak ). Then yi = yi−1 xai , so C is the · · · ⇒
only chain with its label. 

Now let C and ϕ̃(C) be as in the previous paragraph. We claim that the 
set {xa1 , . . . , xak } contains no broken circuit. (We don’t even require that C is 
increasing for this part of the proof.) Write zi = xai , and suppose to the contrary 
that B = {zi1 , . . . , zij } is a broken circuit, with 1 i1 < < ij → k. Let B∅{x→ · · · r }
be a circuit with r > ait for 1 → t → j. Now for any circuit {u1, . . . , uh} and any 
1 i h we have → → 

u1 uh = u1 ui+1⇒ u2 ⇒ · · · ⇒ ⇒ · · · ⇒ ui−1 ⇒ ⇒ · · · ⇒ uh. 

Thus 
zi1 zij−1

⇒ zi2 ⇒ · · · ⇒ ⇒ xr = 
� 

z = zi1 ⇒ zi2 ⇒ · · · ⇒ zij . 
z⊆B 

Then yij −1 ⇒ xr = yij , contradicting the maximality of the label aij . Hence 
a1 , . . . , xak } ≤ BC(M).{x

Conversely, suppose that T := {xa1 , . . . , xak } contains no broken circuit, with 
· · · a1 ⇒· · ·⇒ 0 := y0 � y1 � � yk.a1 < < ak . Let yi = x xai , and let C be the chain ˆ · · ·

(Note that C is saturated by semimodularity.) We claim that ϕ̃(C) = (a1, . . . , ak ). 
If not, then yi−1 ⇒ xj = yi for some j > ai. Thus 

rk(T ) = rk(T ∅ {xj }) = i. 

Since T is independent, T ∅ {xj } contains a circuit Q satisfying xj ≤ Q, so T 
contains a broken circuit. This contradiction completes the proof of Claim 2. 

To complete the proof of the theorem, note that we have shown that fi−1(BC(M)) 
0 = y0 � y1 � � yi such that ˜is the number of chains C : ˆ ϕ(C) is strictly increas-· · ·

ing, or equivalently, ϕ(C) is strictly decreasing. Since ϕ is an E-labeling, the proof 
follows from Theorem 4.11. � 

Corollary 4.6. The broken circuit complex BC(M) is pure, i.e., every maximal 
face has the same dimension. 

to be inserted. � 
Note (for readers with some knowledge of topology). (a) Let M be a matroid 

on the linearly ordered set u1 < u2 < < um. Note that F ≤ BC(M) if and only · · · 
m} ≤ BC(M). Define the reduced broken circuit complex BCr (M) by if F ∅ {u

BCr (M) = {F ≤ BC(M) : um .⇔≤ F}
Thus 

BC(M) = BCr(M) ∼ um, 

the join of BCr(M) and the vertex um. Equivalently, BC(M) is a cone over BCr (M) 
with apex um. As a consequence, BC(M) is contractible and therefore has the ho
motopy type of a point. A more interesting problem is to determine the topological 
nature of BCr(M). It can be shown that BCr (M) has the homotopy type of a wedge 
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of λ(M ) spheres of dimension rank(M ) − 2, where (−1)rank(M )−1λ(M ) = ψ� 
M (1) 

(the derivative of ψM (t) at t = 1). See Exercise 21 for more information on λ(M ). 
(b) [to be inserted] 
As an example of the applicability of our results on matroids and geometric 

lattices to arrangements, we have the following purely combinatorial description of 
the number of regions of a real central arrangement. 

Corollary 4.7. Let A be a central arrangement in Rn, and let M be the matroid 
defined by the normals to H ≤ A, i.e., the independent sets of M are the linearly 
independent normals. Then with respect to any linear ordering of the points of M , 
r(A) is the total number of subsets of M that don’t contain a broken circuit. 

Proof. Immediate from Theorems 2.5 and 4.12.	 � 

4.2. Modular elements 

We next discuss a situation in which the characteristic polynomial ψM (t) factors in 
a nice way. 

Definition 4.12. An element x of a geometric lattice L is modular if for all y ≤ L 
we have 

(31) rk(x) + rk(y) = rk(x ∈ y) + rk(x ⇒ y). 

Example 4.9. Let L be a geometric lattice. 

(a)	 ˆ 1 are clearly modular (in any finite lattice). 0 and ˆ

(b) We claim that atoms a are modular. 

Proof. Suppose that a → y. Then a ∈ y = a and a = y, so equation ⇒ y 
(31) holds. (We don’t need that a is an atom for this case.) Now suppose 
a By semimodularity, rk(a ⇒ y) = 1 + rk(y), while rk(a) = 1 and ⇔→ y. 
rk(a ∈ y) = rk(0̂) = 0, so again (31) holds.	 � 

(c) Suppose that rk(L) = 3. All elements of rank 0, 1, or 3 are modular by 
(a) and (b). Suppose that rk(x) = 2. Then x is modular if and only if for 
all elements y = x and rk(y) = 2, we have that rk(x ∈ y) = 1. ⇔

(d) Let L = Bn. If x ≤ Bn then rk(x) = #x. Moreover, for any x, y ≤ Bn we 
have x ∈ y = x ⊕ y and x ⇒ y = x ∅ y. Since for any finite sets x and y we 
have 

#x + #y = #(x ⊕ y) + #(x ∅ y), 

it follows that every element of Bn is modular. In other words, Bn is a 
modular lattice. 

(e) Let	 q be a prime power and Fq the finite field with q elements. Define 
Bn(q) to be the lattice of subspaces, ordered by inclusion, of the vector 
space Fn . Note that Bn(q) is also isomorphic to the intersection lattice q 

of the arrangement of all linear hyperplanes in the vector space Fn(q). 
Figure 4 shows the Hasse diagrams of B2(3) and B3(2). 

Note that for x, y ≤ Bn(q) we have x ∈ y = x ⊕ y and x = x + y⇒ y 
(subspace sum). Clearly Bn(q) is atomic: every vector space is the join 
(sum) of its one-dimensional subspaces. Moreover, Bn(q) is graded of rank 
n, with rank function given by rk(x) = dim(x). Since for any subspaces 
x and y we have 

dim(x) + dim(y) = dim(x ⊕ y) + dim(x + y), 
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Figure 4. The lattices B2 (3) and B3 (2) 

it follows that L is a modular geometric lattice. Thus every x ≤ L is 
modular. 

Note. A projective plane R consists of a set (also denoted R) of 
points, and a collection of subsets of R, called lines, such that: (a) every 
two points lie on a unique line, (b) every two lines intersect in exactly one 
point, and (c) (non-degeneracy) there exist four points, no three of which 
are on a line. The incidence lattice L(R) of R is the set of all points 

0 and ˆand lines of R, ordered by p < L if p ≤ L, with ˆ 1 adjoined. It 
is an immediate consequence of the axioms that when R is finite, L(R) 
is a modular geometric lattice of rank 3. It is an open (and probably 
intractable) problem to classify all finite projective planes. Now let P and 
Q be posets and define their direct product (or cartesian product ) to be 
the set 

P × Q = {(x, y) : x ≤ P, y ≤ Q}, 
ordered componentwise, i.e., (x, y) → (x , y�) if x → x� and y → y . It is easy 
to see that if P and Q are geometric (respectively, atomic, semimodular, 
modular) lattices, then so is P × Q (Exercise 7). It is a consequence of the 
“fundamental theorem of projective geometry” that every finite modular 
geometric lattice is a direct product of boolean algebras Bn, subspace 
lattices Bn(q) for n ⊂ 3, lattices of rank 2 with at least five elements 
(which may be regarded as B2(q) for any q ⊂ 2) and incidence lattices of 
finite projective planes. 

(f) The following result characterizes the modular elements of Γn, which is 
the lattice of partitions of [n] or the intersection lattice of the braid ar
rangement Bn. 

Proposition 4.9. A partition β ≤ Γn is a modular element of Γn if 
and only if β has at most one nonsingleton block. Hence the number of 
modular elements of Γn is 2n − n. 

Proof. If all blocks of β are singletons, then β = 0̂, which is modular by 
(a). Assume that β has the block A with r > 1 elements, and all other 
blocks are singletons. Hence the number β of blocks of β is given by | | 
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n− r + 1. For any π ≤ Γn, we have rk(π) = n− π . Let k = π and| | | | 

j = #{B ≤ π : A ⊕ B = ⇔ �}. 

Then β ∈ π = j + (n− r) and β π = k − j + 1. Hence rk(β) = r − 1,| |	 | ⇒ |
rk(π) = n− k, rk(β ∈ π) = r − j, and rk(β ⇒ π) = n − k + j − 1, so β is 
modular. 

Conversely, let β = {B1, B2, . . . , Bk} with #B1 > 1 and #B2 > 1. 
Let a ≤ B1 and b ≤ B2, and set 

π = {(B1 ∅ b) − a, (B2 ∅ a) − b, B3, . . . , Bk }. 

Then 

|β| = π = k
| |


β ∈ π = {a, b, B1 − a,B2 − b, . . . , B3, . . . , Bk} β ∈ π = k + 2
⊆ | | 
β ⇒ π = {B1 ∅ B2, B3, . . . , Bl} |β π = k − 1.⊆ ⇒ | 

Hence rk(β) + rk(π) = rk(β ∈ π) + rk(β π), so β is not modular. �⇔	 ⇒ 

In a finite lattice L, a complement of x ≤ L is an element y ≤ L such that 
0 and x⇒ y = ˆx∈ y = ˆ 1. For instance, in the boolean algebra Bn every element has 

a unique complement. (See Exercise 3 for the converse.) The following proposition 
collects some useful properties of modular elements. The proof is left as an exercise 
(Exercises 4–5). 

Proposition 4.10. Let L be a geometric lattice of rank n. 

(a)	 Let x ≤ L. The following four conditions are equivalent. 
(i)	 x is a modular element of L. 
(ii)	 If x ∈ y = 0̂, then rk(x) + rk(y) = rk(x ⇒ y). 
(iii)	 If x and y are complements, then rk(x) + rk(y) = n. 
(iv)	 All complements of x are incomparable. 

(b)	 (transitivity of modularity) If x is a modular element of L and y is modular 
in the interval [0̂, x], then y is a modular element of L. 

(c)	 If x and y are modular elements of L, then x ∈ y is also modular. 

The next result, known as the modular element factorization theorem [16], is 
our primary reason for defining modular elements — such an element induces a 
factorization of the characteristic polynomial. 

Theorem 4.13. Let z be a modular element of the geometric lattice L of rank n. 
Write ψz (t) = ψ[ˆ Then0,z](t). 

�	 ⎟ 

(32) ψL(t) = ψz (t) ⎞
� 

µL(y)tn−rk(y)−rk(z)⎠ . 
y : y≥z=0̂ 

Example 4.10. Before proceeding to the proof of Theorem 4.13, let us consider 
an example. The illustration below is the affine diagram of a matroid M of rank 
3, together with its lattice of flats. The two lines (flats of rank 2) labelled x and y 
are modular by Example 4.9(c). 
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y
x

x y

Hence by equation (32) ψM (t) is divisible by ψx(t). Moreover, any atom a of

the interval [0̂, x] is modular, so ψx(t) is divisible by ψa(t) = t − 1. From this it
is immediate (e.g., because the characteristic polynomial ψG(t) of any geometric
latticeG of rank n begins xn−axn−1+· · · , where a is the number of atoms ofG) that
ψx(t) = (t−1)(t−5) and ψM (t) = (t−1)(t−3)(t−5). On the other hand, since y is
modular, ψM (t) is divisible by ψy(t), and we get as before ψy(t) = (t−1)(t−3) and
ψM (t) = (t − 1)(t − 3)(t − 5). Geometric lattices whose characteristic polynomial
factors into linear factors in a similar way due to a maximal chain of modular
elements are discussed further beginning with Definition 4.13.

Our proof of Theorem 4.13 will depend on the following lemma of Greene [11].
We give a somewhat simpler proof than Greene.

Lemma 4.5. Let L be a finite lattice with Möbius function µ, and let z ≤ L. The
following identity is valid in the Möbius algebra A(L) of L:

(33) π0̂ :=
�

x⊆L

µ(x)x =

⎤
��

v⊇z

µ(v)v

�
⎢
⎤
� �

y≥z=0̂

µ(y)y

�
⎢ .
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Proof. Let πs for s ≤ L be given by (8). The right-hand side of equation (33) is 
then given by 

µ(v)µ(y)(v ⇒ y) = µ(v)µ(y) 
� 

πs 

v⊇z v⊇z s∗v∞y 
y≥z=ˆ y≥z=ˆ0 0 

πs µ(v)µ(y)= 
s v⊇s,v⊇z 

y⊇s,y≥z=0̂ �
⎡⎡

⎤
⎥⎥

⎤
⎥⎥

�
⎡⎡⎥

⎥⎥�v⊇s≥z 

⎡⎡πs µ(v) µ(y)= ⎢⎡⎢ y⊇ss 
y≥z=0̂ 

0̂,s�z �
⎡⎡⎡⎡

⎤
⎥⎥⎥⎥
⎥⎥ ⎡⎡πs µ(y)= 
⎥⎥ ⎡⎡y⊇ss≥z=0̂ 

y≥z=0̂ (redundant) ⎢ 

0̂,s 

= π0̂. 

Proof of Theorem 4.13. We are assuming that z is a modular element of 
the geometric lattice L. 

ˆ ˆClaim 1. Let v → z and y ∈ z = 0 (so v ∈ y = 0). Then z ∈ (v ⇒ y) = v (as 
illustrated below). 

y 

z y 

z 

v 

0 

v 

v yv 
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Proof of Claim 1. Clearly z ∈ (v ⇒ y) ⊂ v, so it suffices to show that rk(z ∈ (v ⇒ 
y)) → rk(v). Since z is modular we have 

rk(z ∈ (v ⇒ y)) = rk(z) + rk(v ⇒ y) − rk(z ⇒ y) 

= rk(z) + rk(v ⇒ y) − (rk(z) + rk(y) − rk(z ∈ y)) 

0 

= rk(v ⇒ y) − rk(y) 

→ (rk(v) + rk(y) − rk(v ∈ y) 

0 

) − rk(y) by semimodularity 

= rk(v), 

proving Claim 1. 
Claim 2. With v and y as above, we have rk(v ⇒ y) = rk(v) + rk(y). 
Proof of Claim 2. By the modularity of z we have 

rk(z ∈ (v ⇒ y)) + rk(z ⇒ (v ⇒ y)) = rk(z) + rk(v ⇒ y). 

By Claim 1 we have rk(z ∈ (v ⇒ y)) = rk(v). Moreover, again by the modularity of 
z we have 

rk(z ⇒ (v ⇒ y)) = rk(z ⇒ y) = rk(z) + rk(y) − rk(z ∈ y) = rk(z) + rk(y). 

It follows that rk(v) + rk(y) = rk(v ⇒ y), as claimed. 
Now substitute µ(v)v ∃ µ(v)trk(z)−rk(v) and µ(y)y ∃ µ(y)tn−rk(y)−rk(z) in the 

right-hand side of equation (33). Then by Claim 2 we have 

vy ∃ tn−rk(v)−rk(y) n−rk(v∞y)= t . 

Now v ⇒ y is just vy in the Möbius algebra A(L). Hence if we further substi
tute µ(x)x ∃ µ(x)tn−rk(x) in the left-hand side of (33), then the product will be 
preserved. We thus obtain 

�
⎡⎡

⎤
⎥⎥

⎤
� n−rk(y)−rk(z) 

�
⎢ ,

⎥⎥⎥
⎡⎡⎡⎢ 

n−rk(x) µ(v)trk(z)−rk(v)µ(x)t µ(y)t= 
x⊆L v⊇z y≥z=0̂ 

�L (t) �z (t) 

as desired. � 

Corollary 4.8. Let L be a geometric lattice of rank n and a an atom of L. Then 

ψL(t) = (t− 1) 
� 

µ(y)tn−1−rk(y). 
y≥a=0̂ 

Proof. The atom a is modular (Example 4.9(b)), and ψa(t) = t− 1. � 
Corollary 4.8 provides a nice context for understanding the operation of coning 

defined in Chapter 1, in particular, Exercise 2.1. Recall that if A is an affine 
arrangement in Kn given by the equations 

L1(x) = a1, . . . , Lm(x) = am, 

then the cone xA is the arrangement in Kn ×K (where y denotes the last coordinate) 
with equations 

L1(x) = a1y, . . . , Lm(x) = amy, y = 0. 
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Let H0 denote the hyperplane y = 0. It is easy to see by elementary linear algebra 
that 

L(A) ∪= L(cA) − {x ≤ L(A) : x ⊂ H0} = L(A) − L(AH0 ). 

Now H0 is a modular element of L(A) (since it’s an atom), so Corollary 4.8 yields 

µ(y)t(n+1)−1−rk(y)ψcA(t) = (t− 1) 
� 

y ∈∗H0 

= (t− 1)ψA(t). 

There is a left inverse to the operation of coning. Let A be a nonempty linear 
arrangement in Kn+1 . Let H0 ≤ A. Choose coordinates (x0, x1, . . . , xn) in Kn+1 

so that H0 = ker(x0). Let A be defined by the equations 

x0 = 0, L1(x0, . . . , xn) = 0, . . . , Lm(x0, . . . , xn) = 0. 

Define the deconing c−1A (with respect to H0) in Kn by the equations 

L1(1, x1, . . . , xn) = 0, . . . Lm(1, x1, . . . , xn) = 0. 

Clearly c(c−1A) = A and L(c−1A) ∪= L(A) − {x ≤ L(A) : x ⊂ H0}. 

4.3. Supersolvable lattices 

For some geometric lattices L, there are “enough” modular elements to give a 
factorization of ψL(t) into linear factors. 

Definition 4.13. A geometric lattice L is supersolvable if there exists a modular 
0 = x0 � x1 � � xn = ˆmaximal chain, i.e., a maximal chain ˆ 1 such that each xi· · ·

is modular. A central arrangement A is supersolvable if its intersection lattice LA 

is supersolvable. 

0 ˆNote. Let ˆ = x0 � x1 � � xn = 1 be a modular maximal chain of the · · · 
geometric lattice L. Clearly then each xi−1 is a modular element of the interval 
0, xi]. The converse follows from Proposition 4.10(b): if ˆ 1[ˆ 0 = x0 � x1 � � xn = ˆ· · ·
is a maximal chain for which each xi−1 is modular in [0̂, xi], then each xi is modular 
in L. 

Note. The term “supersolvable” comes from group theory. A finite group � 
is supersolvable if and only if its subgroup lattice contains a maximal chain all of 
whose elements are normal subgroups of �. Normal subgroups are “nice” analogues 
of modular elements; see [17, Example 2.5] for further details. 

Corollary 4.9. Let L be a supersolvable geometric lattice of rank n, with modular 
0 = x0 � x1 � � xn = ˆmaximal chain ˆ 1. Let T denote the set of atoms of L, and · · ·

set 

(34) ei = #{a ≤ T : a → xi, a .⇔→ xi−1}

Then ψL(t) = (t− e1)(t− e2) · · · (t− en). 

Proof. Since xn−1 is modular, we have 

0 √ y ≤ T and y ⇔→ xn−1, or y = ˆy ∈ xn−1 = ˆ 0. 
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By Theorem 4.13 we therefore have 
� ⎟ 

n−rk(a)−rk(xn−1 ) + µ(ˆ 0)−rk(xn−1)⎝ 0)tn−rk(ˆψL(t) = ψxn−1 (t) 
⎝ � 

µ(a)t
⎣
.⎣⎞ 

a⊆T 
⎠ 

a∈⊇xn−1 

0) = 1, rk(a) = 1, rk(ˆSince µ(a) = −1, µ(ˆ 0) = 0, and rk(xn−1) = n − 1, the 
expression in brackets is just t−en. Now continue this with L replaced by [0̂, xn−1]

(or use induction on n). �


Note. The positive integers e1, . . . , en of Corollary 4.9 are called the exponents

of L. 

Example 4.11. (a) Let L = Bn, the boolean algebra of rank n. By Exam
ple 4.9(d) every element of Bn is modular. Hence Bn is supersolvable. 
Clearly each ei = 1, so ψBn (t) = (t− 1)n . 

(b) Let L = Bn(q), the lattice of subspaces of Fq . By Example 4.9(e) every n

element of Bn(q) is modular, so Bn(q) is supersolvable. If 
�
k
� 

denotes the j 

number of j-dimensional subspaces of a k-dimensional vector space over 
Fq , then 

ei = [i 1] − [i−1]1 

iq − 1 qi−1 − 1 
= 

q − 1 
− 

q − 1 

i−1 = q . 

Hence 

ψBn (q)(t) = (t− 1)(t− q)(t− q 2 ).) · · · (t− q n−1

In particular, setting t = 0 gives 

q(
n 

1) = (−1)n 
2 ).µBn (q)(ˆ

Note. The expression 
�
k
� 

is called a q-binomial coefficient. It is a j 

polynomial in q with many interesting properties. For the most basic 
properties, see e.g. [18, pp. 27–30]. 

(c) Let L = Γn, the lattice of partitions of the set [n] (a geometric lattice of 
rank n− 1). By Proposition 4.9, a maximal chain of Γn is modular if and 

0 = β0 � β1 � � βn−1 = ˆonly if it has the form ˆ 1, where βi for i > 0 has · · ·
exactly one nonsingleton block Bi (necessarily with i+ 1 elements), with 
B1 n−1 = [n]. In particular, Γn is supersolvable and has ⊇ B2 · · · ⊇ B
exactly n!/2 modular chains for n > 1. The atoms covered by βi are the 
partitions with one nonsingleton block {j, k} ∗ Bi. Hence βi lies above 
exactly 

⎜
i+1
� 

atoms, so 2 
�
i+ 1 

� �
i
� 

ei = − 
2

= i. 
2 

It follows that ψ�n (t) = (t − 1)(t − 2) · · · (t − n + 1) and µ�n (1̂) = 
(−1)n−1(n − 1)!. Compare Corollary 2.2. The polynomials ψBn (t) and 
ψ�n (t) differ by a factor of t because Bn(t) is an arrangement in Kn of 
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rank n− 1. In general, if A is an arrangement and ess(A) its essentializa
tion, then 

trk(ess(A))ψA(t) = trk(A)ψess(A)(t).(35) 

(See Lecture 1, Exercise 2.) 

Note. It is natural to ask whether there is a more general class of geometric 
lattices L than the supersolvable ones for which ψL(t) factors into linear factors 
(over Z). There is a profound such generalization due to Terao [22] when L is an 
intersection poset of a linear arrangement A in Kn . Write K[x] = K[x1, . . . , xn] 
and define 

T(A) = {(p1, . . . , pn) ≤ K[x]n : pi(H) ∗ H for all H ≤ A}. 
Here we are regarding (p1, . . . , pn) : Kn ∃ Kn, viz., if (a1, . . . , an) ≤ Kn, then 

(p1, . . . , pn)(a1, . . . , an) = (p1(a1, . . . , an), . . . , pn(a1, . . . , an)). 

The K[x]-module structure K[x] × T(A) ∃ T(A) is given explicitly by 

q · (p1, . . . , pn) = (qp1, . . . , qpn). 

Note, for instance, that we always have (x1, . . . , xn) ≤ T(A). Since A is a linear 
arrangement, T(A) is indeed a K[x]-module. (We have given the most intuitive 
definition of the module T(A), though it isn’t the most useful definition for proofs.) 
It is easy to see that T(A) has rank n as a K[x]-module, i.e., T(A) contains n, 
but not n + 1, elements that are linearly independent over K[x]. We say that A 
is a free arrangement if T(A) is a free K[x]-module, i.e., there exist Q1, . . . , Qn ≤
T(A) such that every element Q ≤ T(A) can be uniquely written in the form 
Q = q1Q1 + + qnQn, where qi ≤ K[x]. It is easy to see that if T(A) is free, · · · 
then the basis {Q1, . . . , Qn} can be chosen to be homogeneous, i.e., all coordinates 
of each Qi are homogeneous polynomials of the same degree di. We then write 
di = deg Qi. It can be shown that supersolvable arrangements are free, but there 
are also nonsupersolvable free arrangements. The property of freeness seems quite 
subtle; indeed, it is unknown whether freeness is a matroidal property, i.e., depends 
only on the intersection lattice LA (regarding the ground field K as fixed). The 
remarkable “factorization theorem” of Terao is the following. 

Theorem 4.14. Suppose that T(A) is free with homogeneous basis Q1, . . . , Qn. If 
deg Qi = di then 

ψA(t) = (t− d1)(t− d2) · · · (t− dn). 

We will not prove Theorem 4.14 here. A good reference for this subject is [13, 
Ch. 4]. 

Returning to supersolvability, we can try to characterize the supersolvable prop
erty for various classes of geometric lattices. Let us consider the case of the bond 
lattice LG of the graph G. A graph H with at least one edge is doubly connected if 
it is connected and remains connected upon the removal of any vertex (and all in
cident edges). A maximal doubly connected subgraph of a graph G is called a block 
of G. For instance, if G is a forest then its blocks are its edges. Two different blocks 
of G intersect in at most one vertex. Figure 5 shows a graph with eight blocks, five 
of which consist of a single edge. The following proposition is straightforward to 
prove (Exercise 16). 
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Figure 5. A graph with eight blocks 

Proposition 4.11. Let G be a graph with blocks G1, . . . , Gk . Then 

.LG 
∪= LG1 × · · · × LGk 

It is also easy to see that if L1 and L2 are geometric lattices, then L1 and 
L2 are supersolvable if and only if L1 × L2 is supersolvable (Exercise 18). Hence 
in characterizing supersolvable graphs G (i.e., graphs whose bond lattice LG is 
supersolvable) we may assume that G is doubly connected. Note that for any 
connected (and hence a fortiori doubly connected) graph G, any coatom β of LG 

has exactly two blocks. 

Proposition 4.12. Let G be a doubly connected graph, and let β = {A,B} be a 
coatom of the bond lattice LG, where #A #B. Then β is a modular element of →
LG if and only if #A = 1, say A = {v}, and the neighborhood N(v) (the set of 
vertices adjacent to v) forms a clique (i.e., any two distinct vertices of N(v) are 
adjacent). 

Proof. The proof parallels that of Proposition 4.9, which is a special case. Suppose 
that #A > 1. Since G is doubly connected, there exist u, v ≤ A and u�, v ≤ B such 
that u = v, u� = v , uu ≤ E(G), and vv� ≤ E(G). Set π = {(A∅u�)−v, (B∅v)−u .⇔ ⇔ }
If G has n vertices then rk(β) = rk(π) = n−2, rk(β π) = n−1, and rk(β∈π) = n−4.⇒
Hence β is not modular. 

{v}Assume then that A = . Suppose that av, bv ≤ E(G) but ab ⇔≤ E(G). We 
need to show that β is not modular. Let π = {A− {a, b}, {a, b, v}}. Then 

π β = ˆ⇒ 1, π ∈ β = {A− {a, b}, a, b, v} 

rk(π) = rk(β) = n− 2, rk(π ⇒ β) = n− 1, rk(π ∈ β) = n− 4. 

Hence β is not modular. 
Conversely, let β = {A, v}. Assume that if av, bv ≤ E(G) then ab ≤ E(G). 

It is then straightforward to show (Exercise 8) that β is modular, completing the 
proof. � 

As an immediate consequence of Propositions 4.10(b) and 4.12 we obtain a 
characterization of supersolvable graphs. 

Corollary 4.10. A graph G is supersolvable if and only if there exists an ordering 
v1, v2, . . . , vn of its vertices such that if i < k, j < k, vivk ≤ E(G) and vj vk ≤ E(G), 
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then vivj ≤ E(G). Equivalently, in the restriction of G to the vertices v1, v2, . . . , vi, 
the neighborhood of vi is a clique. 

Note. Supersolvable graphs G had appeared earlier in the literature under the 
names chordal, rigid circuit, or triangulated graphs. One of their many characteri
zations is that any circuit of length at least four contains a chord. Equivalently, no 
induced subgraph of G is a k-cycle for k ⊂ 4. 


