LECTURE 1

Basic definitions, the intersection poset and the characteristic polynomial

1.1. Basic definitions

The following notation is used throughout for certain sets of numbers:

- \mathbb{N} nonnegative integers
- \mathbb{P} positive integers
- \mathbb{Z} integers
- \mathbb{Q} rational numbers
- \mathbb{R} real numbers
- \mathbb{R}_+ positive real numbers
- \mathbb{C} complex numbers
- [m] the set $\{1, 2, \ldots, m\}$ when $m \in \mathbb{N}$

We also write $[t^k]\chi(t)$ for the coefficient of t^k in the polynomial or power series $\chi(t)$. For instance, $[t^2](1+t)^4 = 6$.

A finite hyperplane arrangement \mathcal{A} is a finite set of affine hyperplanes in some vector space $V \cong K^n$, where K is a field. We will not consider infinite hyperplane arrangements or arrangements of general subspaces or other objects (though they have many interesting properties), so we will simply use the term *arrangement* for a finite hyperplane arrangement. Most often we will take $K = \mathbb{R}$, but as we will see even if we're only interested in this case it is useful to consider other fields as well. To make sure that the definition of a hyperplane arrangement is clear, we define a *linear hyperplane* to be an (n-1)-dimensional subspace H of V, i.e.,

$$H = \{ v \in V : \alpha \cdot v = 0 \}$$

where α is a fixed nonzero vector in V and $\alpha \cdot v$ is the usual dot product:

$$(\alpha_1,\ldots,\alpha_n)\cdot(v_1,\ldots,v_n)=\sum \alpha_i v_i$$

An affine hyperplane is a translate J of a linear hyperplane, i.e.,

$$V = \{ v \in V : \alpha \cdot v = a \},\$$

where α is a fixed nonzero vector in V and $a \in K$.

If the equations of the hyperplanes of \mathcal{A} are given by $L_1(x) = a_1, \ldots, L_m(x) = a_m$, where $x = (x_1, \ldots, x_n)$ and each $L_i(x)$ is a homogeneous linear form, then we call the polynomial

$$Q_{\mathcal{A}}(x) = (L_1(x) - a_1) \cdots (L_m(x) - a_m)$$

the defining polynomial of \mathcal{A} . It is often convenient to specify an arrangement by its defining polynomial. For instance, the arrangement \mathcal{A} consisting of the *n* coordinate hyperplanes has $Q_{\mathcal{A}}(x) = x_1 x_2 \cdots x_n$.

Let \mathcal{A} be an arrangement in the vector space V. The dimension dim (\mathcal{A}) of \mathcal{A} is defined to be dim(V) (= n), while the rank rank (\mathcal{A}) of \mathcal{A} is the dimension of the space spanned by the normals to the hyperplanes in \mathcal{A} . We say that \mathcal{A} is essential if rank $(\mathcal{A}) = \dim(\mathcal{A})$. Suppose that rank $(\mathcal{A}) = r$, and take $V = K^n$. Let

Y be a complementary space in K^n to the subspace X spanned by the normals to hyperplanes in \mathcal{A} . Define

$$W = \{ v \in V : v \cdot y = 0 \ \forall y \in Y \}.$$

If $\operatorname{char}(K) = 0$ then we can simply take W = X. By elementary linear algebra we have

(1)
$$\operatorname{codim}_W(H \cap W) = 1$$

for all $H \in \mathcal{A}$. In other words, $H \cap W$ is a hyperplane of W, so the set $\mathcal{A}_W := \{H \cap W : H \in \mathcal{A}\}$ is an essential arrangement in W. Moreover, the arrangements \mathcal{A} and \mathcal{A}_W are "essentially the same," meaning in particular that they have the same intersection poset (as defined in Definition 1.1). Let us call \mathcal{A}_W the *essentialization* of \mathcal{A} , denoted ess(\mathcal{A}). When $K = \mathbb{R}$ and we take W = X, then the arrangement \mathcal{A} is obtained from \mathcal{A}_W by "stretching" the hyperplane $H \cap W \in \mathcal{A}_W$ orthogonally to W. Thus if W^{\perp} denotes the orthogonal complement to W in V, then $H' \in \mathcal{A}_W$ if and only if $H' \oplus W^{\perp} \in \mathcal{A}$. Note that in characteristic p this type of reasoning fails since the orthogonal complement of a subspace W can intersect W in a subspace of dimension greater than 0.

Example 1.1. Let \mathcal{A} consist of the lines $x = a_1, \ldots, x = a_k$ in K^2 (with coordinates x and y). Then we can take W to be the x-axis, and $ess(\mathcal{A})$ consists of the points $x = a_1, \ldots, x = a_k$ in K.

Now let $K = \mathbb{R}$. A region of an arrangement \mathcal{A} is a connected component of the complement X of the hyperplanes:

$$X = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H.$$

Let $\mathcal{R}(\mathcal{A})$ denote the set of regions of \mathcal{A} , and let

$$r(\mathcal{A}) = \#\mathcal{R}(\mathcal{A}),$$

the number of regions. For instance, the arrangement \mathcal{A} shown below has $r(\mathcal{A}) = 14$.

It is a simple exercise to show that every region $R \in \mathcal{R}(\mathcal{A})$ is open and convex (continuing to assume $K = \mathbb{R}$), and hence homeomorphic to the interior of an *n*dimensional ball \mathbb{B}^n (Exercise 1). Note that if W is the subspace of V spanned by the normals to the hyperplanes in \mathcal{A} , then $R \in \mathcal{R}(\mathcal{A})$ if and only if $R \cap W \in \mathcal{R}(\mathcal{A}_W)$. We say that a region $R \in \mathcal{R}(\mathcal{A})$ is *relatively bounded* if $R \cap W$ is bounded. If \mathcal{A} is essential, then relatively bounded is the same as bounded. We write $b(\mathcal{A})$ for

the number of relatively bounded regions of \mathcal{A} . For instance, in Example 1.1 take $K = \mathbb{R}$ and $a_1 < a_2 < \cdots < a_k$. Then the relatively bounded regions are the regions $a_i < x < a_{i+1}, 1 \le i \le k-1$. In ess(\mathcal{A}) they become the (bounded) open intervals (a_i, a_{i+1}) . There are also two regions of \mathcal{A} that are not relatively bounded, viz., $x < a_1$ and $x > a_k$.

A (closed) half-space is a set $\{x \in \mathbb{R}^n : x \cdot \alpha \geq c\}$ for some $\alpha \in \mathbb{R}^n, c \in \mathbb{R}$. If H is a hyperplane in \mathbb{R}^n , then the complement $\mathbb{R}^n - H$ has two (open) components whose closures are half-spaces. It follows that the closure \overline{R} of a region R of \mathcal{A} is a finite intersection of half-spaces, i.e., a (convex) polyhedron (of dimension n). A bounded polyhedron is called a (convex) polytope. Thus if R (or \overline{R}) is bounded, then \overline{R} is a polytope (of dimension n).

An arrangement \mathcal{A} is in general position if

$$\{H_1, \dots, H_p\} \subseteq \mathcal{A}, \ p \le n \quad \Rightarrow \quad \dim(H_1 \cap \dots \cap H_p) = n - p$$

$$\{H_1, \dots, H_p\} \subseteq \mathcal{A}, \ p > n \quad \Rightarrow \quad H_1 \cap \dots \cap H_p = \emptyset.$$

For instance, if n = 2 then a set of lines is in general position if no two are parallel and no three meet at a point.

Let us consider some interesting examples of arrangements that will anticipate some later material.

Example 1.2. Let \mathcal{A}_m consist of m lines in general position in \mathbb{R}^2 . We can compute $r(\mathcal{A}_m)$ using the *sweep hyperplane* method. Add a L line to \mathcal{A}_k (with $\mathcal{A}_K \cup \{L\}$ in general position). When we travel along L from one end (at infinity) to the other, every time we intersect a line in \mathcal{A}_k we create a new region, and we create one new region at the end. Before we add any lines we have one region (all of \mathbb{R}^2). Hence

$$r(\mathcal{A}_m) = \#$$
intersections + $\#$ lines + 1

$$=$$
 $\binom{m}{2} + m + 1.$

Example 1.3. The braid arrangement \mathcal{B}_n in K^n consists of the hyperplanes

$$B_n: \quad x_i - x_j = 0, \quad 1 \le i < j \le n.$$

Thus \mathcal{B}_n has $\binom{n}{2}$ hyperplanes. To count the number of regions when $K = \mathbb{R}$, note that specifying which side of the hyperplane $x_i - x_j = 0$ a point (a_1, \ldots, a_n) lies on is equivalent to specifying whether $a_i < a_j$ or $a_i > a_j$. Hence the number of regions is the number of ways that we can specify whether $a_i < a_j$ or $a_i > a_j$ for $1 \leq i < j \leq n$. Such a specification is given by imposing a linear order on the a_i 's. In other words, for each permutation $w \in \mathfrak{S}_n$ (the symmetric group of all permutations of $1, 2, \ldots, n$), there corresponds a region R_w of \mathcal{B}_n given by

$$R_w = \{(a_1, \dots, a_n) \in \mathbb{R}^n : a_{w(1)} > a_{w(2)} > \dots > a_{w(n)}\}.$$

Hence $r(\mathcal{B}_n) = n!$. Rarely is it so easy to compute the number of regions!

Note that the braid arrangement \mathcal{B}_n is not essential; indeed, rank $(\mathcal{B}_n) = n-1$. When char $(K) \neq 2$ the space $W \subseteq K^n$ of equation (1) can be taken to be

$$W = \{ (a_1, \dots, a_n) \in K^n : a_1 + \dots + a_n = 0 \}.$$

The braid arrangement has a number of "deformations" of considerable interest. We will just define some of them now and discuss them further later. All these arrangements lie in K^n , and in all of them we take $1 \le i < j \le n$. The reader who likes a challenge can try to compute their number of regions when $K = \mathbb{R}$. (Some are much easier than others.)

- generic braid arrangement: $x_i x_j = a_{ij}$, where the a_{ij} 's are "generic" (e.g., linearly independent over the prime field, so K has to be "sufficiently large"). The precise definition of "generic" will be given later. (The prime field of K is its smallest subfield, isomorphic to either \mathbb{Q} or $\mathbb{Z}/p\mathbb{Z}$ for some prime p.)
- semigeneric braid arrangement: $x_i x_j = a_i$, where the a_i 's are "generic."
- Shi arrangement: $x_i x_j = 0, 1$ (so n(n-1) hyperplanes in all).
- Linial arrangement: $x_i x_j = 1$.
- Catalan arrangement: $x_i x_j = -1, 0, 1.$
- semiorder arrangement: $x_i x_j = -1, 1$.
- threshold arrangement: $x_i + x_j = 0$ (not really a deformation of the braid arrangement, but closely related).

An arrangement \mathcal{A} is central if $\bigcap_{H \in \mathcal{A}} H \neq \emptyset$. Equivalently, \mathcal{A} is a translate of a *linear arrangement* (an arrangement of linear hyperplanes, i.e., hyperplanes passing through the origin). Many other writers call an arrangement central, rather than linear, if $0 \in \bigcap_{H \in \mathcal{A}} H$. If \mathcal{A} is central with $X = \bigcap_{H \in \mathcal{A}} H$, then rank $(\mathcal{A}) =$ codim(X). If \mathcal{A} is central, then note also that $b(\mathcal{A}) = 0$ [why?].

There are two useful arrangements closely related to a given arrangement \mathcal{A} . If \mathcal{A} is a linear arrangement in K^n , then *projectivize* \mathcal{A} by choosing some $H \in \mathcal{A}$ to be the hyperplane at infinity in projective space P_K^{n-1} . Thus if we regard

$$P_K^{n-1} = \{(x_1, \ldots, x_n) : x_i \in K, \text{ not all } x_i = 0\} / \sim,$$

where $u \sim v$ if $u = \alpha v$ for some $0 \neq \alpha \in K$, then

 $H = (\{(x_1, \dots, x_{n-1}, 0) : x_i \in K, \text{ not all } x_i = 0\} / \sim) \cong P_K^{n-2}.$

The remaining hyperplanes in \mathcal{A} then correspond to "finite" (i.e., not at infinity) projective hyperplanes in P_K^{n-1} . This gives an arrangement $\operatorname{proj}(\mathcal{A})$ of hyperplanes in P_K^{n-1} . When $K = \mathbb{R}$, the two regions R and -R of \mathcal{A} become identified in $\operatorname{proj}(\mathcal{A})$. Hence $r(\operatorname{proj}(\mathcal{A})) = \frac{1}{2}r(\mathcal{A})$. When n = 3, we can draw $P_{\mathbb{R}}^2$ as a disk with

 $_2r(\mathcal{A})$. When n = 3, we can draw $P_{\mathbb{R}}$ as a disk with antipodal boundary points identified. The circumference of the disk represents the hyperplane at infinity. This provides a good way to visualize three-dimensional real linear arrangements. For instance, if \mathcal{A} consists of the three coordinate hyperplanes $x_1 = 0, x_2 = 0$, and $x_3 = 0$, then a projective drawing is given by

The line labelled *i* is the projectivization of the hyperplane $x_i = 0$. The hyperplane at infinity is $x_3 = 0$. There are four regions, so $r(\mathcal{A}) = 8$. To draw the incidences among all eight regions of \mathcal{A} , simply "reflect" the interior of the disk to the exterior:

Figure 1. A projectivization of the braid arrangement \mathcal{B}_4

Regarding this diagram as a planar graph, the dual graph is the 3-cube (i.e., the vertices and edges of a three-dimensional cube) [why?].

For a more complicated example of projectivization, Figure 1 shows $\operatorname{proj}(\mathcal{B}_4)$ (where we regard \mathcal{B}_4 as a three-dimensional arrangement contained in the hyperplane $x_1 + x_2 + x_3 + x_4 = 0$ of \mathbb{R}^4), with the hyperplane $x_i = x_j$ labelled ij, and with $x_1 = x_4$ as the hyperplane at infinity. We now define an operation which is "inverse" to projectivization. Let \mathcal{A} be an (affine) arrangement in K^n , given by the equations

$$L_1(x) = a_1, \ldots, L_m(x) = a_m.$$

Introduce a new coordinate y, and define a central arrangement $c\mathcal{A}$ (the *cone* over \mathcal{A}) in $K^n \times K = K^{n+1}$ by the equations

$$L_1(x) = a_1 y, \ldots, L_m(x) = a_m y, y = 0.$$

For instance, let \mathcal{A} be the arrangement in \mathbb{R}^1 given by x = -1, x = 2, and x = 3. The following figure should explain why $c\mathcal{A}$ is called a cone.

It is easy to see that when $K = \mathbb{R}$, we have $r(c\mathcal{A}) = 2r(\mathcal{A})$. In general, $c\mathcal{A}$ has the "same combinatorics as \mathcal{A} , times 2." See Exercise 1.

1.2. The intersection poset

Recall that a *poset* (short for partially ordered set) is a set P and a relation \leq satisfying the following axioms (for all $x, y, z \in P$):

- (P1) (reflexivity) $x \le x$
- (P2) (antisymmetry) If $x \leq y$ and $y \leq x$, then x = y.
- (P3) (transitivity) If $x \leq y$ and $y \leq z$, then $x \leq z$.

Obvious notation such as x < y for $x \leq y$ and $x \neq y$, and $y \geq x$ for $x \leq y$ will be used throughout. If $x \leq y$ in P, then the (closed) *interval* [x, y] is defined by

$$[x, y] = \{ z \in P : x \le z \le y \}.$$

Note that the empty set \emptyset is *not* a closed interval. For basic information on posets not covered here, see [18].

Definition 1.1. Let \mathcal{A} be an arrangement in V, and let $L(\mathcal{A})$ be the set of all *nonempty* intersections of hyperplanes in \mathcal{A} , including V itself as the intersection over the empty set. Define $x \leq y$ in $L(\mathcal{A})$ if $x \supseteq y$ (as subsets of V). In other words, $L(\mathcal{A})$ is partially ordered by *reverse* inclusion. We call $L(\mathcal{A})$ the *intersection poset* of \mathcal{A} .

NOTE. The primary reason for ordering intersections by reverse inclusion rather than ordinary inclusion is Proposition 3.8. We don't want to alter the well-established definition of a geometric lattice or to refer constantly to "dual geometric lattices."

The element $V \in L(\mathcal{A})$ satisfies $x \geq V$ for all $x \in L(\mathcal{A})$. In general, if P is a poset then we denote by $\hat{0}$ an element (necessarily unique) such that $x \geq \hat{0}$ for all

Figure 2. Examples of intersection posets

 $x \in P$. We say that y covers x in a poset P, denoted x < y, if x < y and no $z \in P$ satisfies x < z < y. Every finite poset is determined by its cover relations. The (Hasse) diagram of a finite poset is obtained by drawing the elements of P as dots, with x drawn lower than y if x < y, and with an edge between x and y if x < y. Figure 2 illustrates four arrangements \mathcal{A} in \mathbb{R}^2 , with (the diagram of) $L(\mathcal{A})$ drawn below \mathcal{A} .

A chain of length k in a poset P is a set $x_0 < x_1 < \cdots < x_k$ of elements of P. The chain is saturated if $x_0 < x_1 < \cdots < x_k$. We say that P is graded of rank n if every maximal chain of P has length n. In this case P has a rank function $\operatorname{rk} : P \to \mathbb{N}$ defined by:

- rk(x) = 0 if x is a minimal element of P.
- $\operatorname{rk}(y) = \operatorname{rk}(x) + 1$ if $x \lessdot y$ in P.

If x < y in a graded poset P then we write $\operatorname{rk}(x, y) = \operatorname{rk}(y) - \operatorname{rk}(x)$, the *length* of the interval [x, y]. Note that we use the notation $\operatorname{rank}(\mathcal{A})$ for the rank of an arrangement \mathcal{A} but rk for the rank function of a graded poset.

Proposition 1.1. Let \mathcal{A} be an arrangement in a vector space $V \cong K^n$. Then the intersection poset $L(\mathcal{A})$ is graded of rank equal to rank(\mathcal{A}). The rank function of $L(\mathcal{A})$ is given by

$$rk(x) = codim(x) = n - dim(x),$$

where dim(x) is the dimension of x as an affine subspace of V.

Proof. Since $L(\mathcal{A})$ has a unique minimal element $\hat{0} = V$, it suffices to show that (a) if $x \leq y$ in $L(\mathcal{A})$ then $\dim(x) - \dim(y) = 1$, and (b) all maximal elements of $L(\mathcal{A})$ have dimension $n - \operatorname{rank}(\mathcal{A})$. By linear algebra, if H is a hyperplane and x an affine subspace, then $H \cap x = x$ or $\dim(x) - \dim(H \cap x) = 1$, so (a) follows. Now suppose that x has the largest codimension of any element of $L(\mathcal{A})$, say $\operatorname{codim}(x) = d$. Thus x is an intersection of d linearly independent hyperplanes (i.e., their normals are linearly independent) H_1, \ldots, H_d in \mathcal{A} . Let $y \in L(\mathcal{A})$ with $e = \operatorname{codim}(y) < d$. Thus y is an intersection of e hyperplanes, so some H_i ($1 \leq i \leq d$) is linearly independent from them. Then $y \cap H_i \neq \emptyset$ and $\operatorname{codim}(y \cap H_i) > \operatorname{codim}(y)$. Hence y is not a maximal element of $L(\mathcal{A})$, proving (b). \Box

Figure 3. An intersection poset and Möbius function values

1.3. The characteristic polynomial

A poset P is *locally finite* if every interval [x, y] is finite. Let Int(P) denote the set of all closed intervals of P. For a function $f : Int(P) \to \mathbb{Z}$, write f(x, y) for f([x, y]). We now come to a fundamental invariant of locally finite posets.

Definition 1.2. Let *P* be a locally finite poset. Define a function $\mu = \mu_P$: Int(*P*) $\rightarrow \mathbb{Z}$, called the *Möbius function* of *P*, by the conditions:

(2)
$$\mu(x,x) = 1, \text{ for all } x \in P$$
$$\mu(x,y) = -\sum_{x \le z < y} \mu(x,z), \text{ for all } x < y \text{ in } P.$$

This second condition can also be written

$$\sum_{x \le z \le y} \mu(x, z) = 0, \text{ for all } x < y \text{ in } P.$$

If P has a $\hat{0}$, then we write $\mu(x) = \mu(\hat{0}, x)$. Figure 3 shows the intersection poset L of the arrangement \mathcal{A} in K^3 (for any field K) defined by $Q_{\mathcal{A}}(x) = xyz(x+y)$, together with the value $\mu(x)$ for all $x \in L$.

A important application of the Möbius function is the *Möbius inversion for*mula. The best way to understand this result (though it does have a simple direct proof) requires the machinery of incidence algebras. Let $\mathcal{I}(P) = \mathcal{I}(P, K)$ denote the vector space of all functions $f : \text{Int}(P) \to K$. Write f(x, y) for f([x, y]). For $f, g \in \mathcal{I}(P)$, define the product $fg \in \mathcal{I}(P)$ by

$$fg(x,y) = \sum_{x \le z \le y} f(x,z)g(z,y).$$

It is easy to see that this product makes $\mathcal{I}(P)$ an associative \mathbb{Q} -algebra, with multiplicative identity δ given by

$$\delta(x,y) = \begin{cases} 1, & x = y \\ 0, & x < y. \end{cases}$$

Define the zeta function $\zeta \in \mathcal{J}(P)$ of P by $\zeta(x, y) = 1$ for all $x \leq y$ in P. Note that the Möbius function μ is an element of $\mathcal{J}(P)$. The definition of μ (Definition 1.2) is

equivalent to the relation $\mu \zeta = \delta$ in $\mathfrak{I}(P)$. In any finite-dimensional algebra over a field, one-sided inverses are two-sided inverses, so $\mu = \zeta^{-1}$ in $\mathfrak{I}(P)$.

Theorem 1.1. Let P be a finite poset with Möbius function μ , and let $f, g : P \to K$. Then the following two conditions are equivalent:

$$f(x) = \sum_{y \ge x} g(y), \text{ for all } x \in P$$

$$g(x) = \sum_{y \ge x} \mu(x, y) f(y), \text{ for all } x \in P$$

Proof. The set K^P of all functions $P \to K$ forms a vector space on which $\mathfrak{I}(P)$ acts (on the left) as an algebra of linear transformations by

$$(\xi f)(x) = \sum_{y \ge x} \xi(x, y) f(y),$$

where $f \in K^P$ and $\xi \in \mathcal{I}(P)$. The Möbius inversion formula is then nothing but the statement

$$\zeta f = g \Leftrightarrow f = \mu g.$$

We now come to the main concept of this section.

Definition 1.3. The characteristic polynomial $\chi_{\mathcal{A}}(t)$ of the arrangement \mathcal{A} is defined by

(3)
$$\chi_{\mathcal{A}}(t) = \sum_{x \in L(\mathcal{A})} \mu(x) t^{\dim(x)}.$$

For instance, if \mathcal{A} is the arrangement of Figure 3, then

$$\chi_{\mathcal{A}}(t) = t^3 - 4t^2 + 5t - 2 = (t - 1)^2(t - 2).$$

Note that we have immediately from the definition of $\chi_{\mathcal{A}}(t)$, where \mathcal{A} is in K^n , that

$$\chi_{\mathcal{A}}(t) = t^n - (\#\mathcal{A})t^{n-1} + \cdots$$

Example 1.4. Consider the coordinate hyperplane arrangement \mathcal{A} with defining polynomial $Q_{\mathcal{A}}(x) = x_1 x_2 \cdots x_n$. Every subset of the hyperplanes in \mathcal{A} has a different nonempty intersection, so $L(\mathcal{A})$ is isomorphic to the *boolean algebra* B_n of all subsets of $[n] = \{1, 2, \ldots, n\}$, ordered by inclusion.

Proposition 1.2. Let \mathcal{A} be given by the above example. Then $\chi_{\mathcal{A}}(t) = (t-1)^n$.

Proof. The computation of the Möbius function of a boolean algebra is a standard result in enumerative combinatorics with many proofs. We will give here a naive proof from first principles. Let $y \in L(\mathcal{A})$, r(y) = k. We claim that

(4)
$$\mu(y) = (-1)^k$$

The assertion is clearly true for $\operatorname{rk}(y) = 0$, when $y = \hat{0}$. Now let $y > \hat{0}$. We need to show that

(5)
$$\sum_{x \le y} (-1)^{\operatorname{rk}(x)} = 0.$$

The number of x such that $x \leq y$ and $\operatorname{rk}(x) = i$ is $\binom{k}{i}$, so (5) is equivalent to the well-known identity (easily proved by substituting q = -1 in the binomial expansion of $(q+1)^k$) $\sum_{i=0}^k (-1)^i \binom{k}{i} = 0$ for k > 0.