LECTURE 1

Basic definitions, the intersection poset and the characteristic polynomial

1.1. Basic definitions

The following notation is used throughout for certain sets of numbers:

\mathbb{N}	nonnegative integers
\mathbb{P}	positive integers
\mathbb{Z}	integers
\mathbb{Q}	rational numbers
\mathbb{R}	real numbers
$\mathbb{R}+$	positive real numbers
\mathbb{C}	complex numbers
$[m]$	the set $\{1,2, \ldots, m\}$ when $m \in \mathbb{N}$

We also write $\left[t^{k}\right] \chi(t)$ for the coefficient of t^{k} in the polynomial or power series $\chi(t)$. For instance, $\left[t^{2}\right](1+t)^{4}=6$.

A finite hyperplane arrangement \mathcal{A} is a finite set of affine hyperplanes in some vector space $V \cong K^{n}$, where K is a field. We will not consider infinite hyperplane arrangements or arrangements of general subspaces or other objects (though they have many interesting properties), so we will simply use the term arrangement for a finite hyperplane arrangement. Most often we will take $K=\mathbb{R}$, but as we will see even if we're only interested in this case it is useful to consider other fields as well. To make sure that the definition of a hyperplane arrangement is clear, we define a linear hyperplane to be an $(n-1)$-dimensional subspace H of V, i.e.,

$$
H=\{v \in V: \alpha \cdot v=0\}
$$

where α is a fixed nonzero vector in V and $\alpha \cdot v$ is the usual dot product:

$$
\left(\alpha_{1}, \ldots, \alpha_{n}\right) \cdot\left(v_{1}, \ldots, v_{n}\right)=\sum \alpha_{i} v_{i}
$$

An affine hyperplane is a translate J of a linear hyperplane, i.e.,

$$
J=\{v \in V: \alpha \cdot v=a\}
$$

where α is a fixed nonzero vector in V and $a \in K$.
If the equations of the hyperplanes of \mathcal{A} are given by $L_{1}(x)=a_{1}, \ldots, L_{m}(x)=$ a_{m}, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and each $L_{i}(x)$ is a homogeneous linear form, then we call the polynomial

$$
Q_{\mathcal{A}}(x)=\left(L_{1}(x)-a_{1}\right) \cdots\left(L_{m}(x)-a_{m}\right)
$$

the defining polynomial of \mathcal{A}. It is often convenient to specify an arrangement by its defining polynomial. For instance, the arrangement \mathcal{A} consisting of the n coordinate hyperplanes has $Q_{\mathcal{A}}(x)=x_{1} x_{2} \cdots x_{n}$.

Let \mathcal{A} be an arrangement in the vector space V. The dimension $\operatorname{dim}(\mathcal{A})$ of \mathcal{A} is defined to be $\operatorname{dim}(V)(=n)$, while the $\operatorname{rank} \operatorname{rank}(\mathcal{A})$ of \mathcal{A} is the dimension of the space spanned by the normals to the hyperplanes in \mathcal{A}. We say that \mathcal{A} is essential if $\operatorname{rank}(\mathcal{A})=\operatorname{dim}(\mathcal{A})$. Suppose that $\operatorname{rank}(\mathcal{A})=r$, and take $V=K^{n}$. Let
Y be a complementary space in K^{n} to the subspace X spanned by the normals to hyperplanes in \mathcal{A}. Define

$$
W=\{v \in V: v \cdot y=0 \forall y \in Y\}
$$

If $\operatorname{char}(K)=0$ then we can simply take $W=X$. By elementary linear algebra we have

$$
\begin{equation*}
\operatorname{codim}_{W}(H \cap W)=1 \tag{1}
\end{equation*}
$$

for all $H \in \mathcal{A}$. In other words, $H \cap W$ is a hyperplane of W, so the set $\mathcal{A}_{W}:=$ $\{H \cap W: H \in \mathcal{A}\}$ is an essential arrangement in W. Moreover, the arrangements \mathcal{A} and \mathcal{A}_{W} are "essentially the same," meaning in particular that they have the same intersection poset (as defined in Definition 1.1). Let us call \mathcal{A}_{W} the essentialization of \mathcal{A}, denoted $\operatorname{ess}(\mathcal{A})$. When $K=\mathbb{R}$ and we take $W=X$, then the arrangement \mathcal{A} is obtained from \mathcal{A}_{W} by "stretching" the hyperplane $H \cap W \in \mathcal{A}_{W}$ orthogonally to W. Thus if W^{\perp} denotes the orthogonal complement to W in V, then $H^{\prime} \in \mathcal{A}_{W}$ if and only if $H^{\prime} \oplus W^{\perp} \in \mathcal{A}$. Note that in characteristic p this type of reasoning fails since the orthogonal complement of a subspace W can intersect W in a subspace of dimension greater than 0 .
Example 1.1. Let \mathcal{A} consist of the lines $x=a_{1}, \ldots, x=a_{k}$ in K^{2} (with coordinates x and y). Then we can take W to be the x-axis, and $\operatorname{ess}(\mathcal{A})$ consists of the points $x=a_{1}, \ldots, x=a_{k}$ in K.

Now let $K=\mathbb{R}$. A region of an arrangement \mathcal{A} is a connected component of the complement X of the hyperplanes:

$$
X=\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H
$$

Let $\mathcal{R}(\mathcal{A})$ denote the set of regions of \mathcal{A}, and let

$$
r(\mathcal{A})=\# \mathcal{R}(\mathcal{A})
$$

the number of regions. For instance, the arrangement \mathcal{A} shown below has $r(\mathcal{A})=14$.

It is a simple exercise to show that every region $R \in \mathcal{R}(\mathcal{A})$ is open and convex (continuing to assume $K=\mathbb{R}$), and hence homeomorphic to the interior of an n dimensional ball \mathbb{B}^{n} (Exercise 1). Note that if W is the subspace of V spanned by the normals to the hyperplanes in \mathcal{A}, then $R \in \mathcal{R}(\mathcal{A})$ if and only if $R \cap W \in \mathcal{R}\left(\mathcal{A}_{W}\right)$. We say that a region $R \in \mathcal{R}(\mathcal{A})$ is relatively bounded if $R \cap W$ is bounded. If \mathcal{A} is essential, then relatively bounded is the same as bounded. We write $b(\mathcal{A})$ for
the number of relatively bounded regions of \mathcal{A}. For instance, in Example 1.1 take $K=\mathbb{R}$ and $a_{1}<a_{2}<\cdots<a_{k}$. Then the relatively bounded regions are the regions $a_{i}<x<a_{i+1}, 1 \leq i \leq k-1$. In $\operatorname{ess}(\mathcal{A})$ they become the (bounded) open intervals $\left(a_{i}, a_{i+1}\right)$. There are also two regions of \mathcal{A} that are not relatively bounded, viz., $x<a_{1}$ and $x>a_{k}$.

A (closed) half-space is a set $\left\{x \in \mathbb{R}^{n}: x \cdot \alpha \geq c\right\}$ for some $\alpha \in \mathbb{R}^{n}, c \in \mathbb{R}$. If H is a hyperplane in \mathbb{R}^{n}, then the complement $\mathbb{R}^{n}-H$ has two (open) components whose closures are half-spaces. It follows that the closure \bar{R} of a region R of \mathcal{A} is a finite intersection of half-spaces, i.e., a (convex) polyhedron (of dimension n). A bounded polyhedron is called a (convex) polytope. Thus if R (or \bar{R}) is bounded, then \bar{R} is a polytope (of dimension n).

An arrangement \mathcal{A} is in general position if

$$
\begin{aligned}
& \left\{H_{1}, \ldots, H_{p}\right\} \subseteq \mathcal{A}, p \leq n \quad \Rightarrow \quad \operatorname{dim}\left(H_{1} \cap \cdots \cap H_{p}\right)=n-p \\
& \left\{H_{1}, \ldots, H_{p}\right\} \subseteq \mathcal{A}, p>n \quad \Rightarrow \quad H_{1} \cap \cdots \cap H_{p}=\emptyset .
\end{aligned}
$$

For instance, if $n=2$ then a set of lines is in general position if no two are parallel and no three meet at a point.

Let us consider some interesting examples of arrangements that will anticipate some later material.

Example 1.2. Let \mathcal{A}_{m} consist of m lines in general position in \mathbb{R}^{2}. We can compute $r\left(\mathcal{A}_{m}\right)$ using the sweep hyperplane method. Add a L line to \mathcal{A}_{k} (with $\mathcal{A}_{K} \cup\{L\}$ in general position). When we travel along L from one end (at infinity) to the other, every time we intersect a line in \mathcal{A}_{k} we create a new region, and we create one new region at the end. Before we add any lines we have one region (all of \mathbb{R}^{2}). Hence

$$
\begin{aligned}
r\left(\mathcal{A}_{m}\right) & =\# \text { intersections }+\# \text { lines }+1 \\
& =\binom{m}{2}+m+1
\end{aligned}
$$

Example 1.3. The braid arrangement \mathcal{B}_{n} in K^{n} consists of the hyperplanes

$$
\mathcal{B}_{n}: \quad x_{i}-x_{j}=0, \quad 1 \leq i<j \leq n
$$

Thus \mathcal{B}_{n} has $\binom{n}{2}$ hyperplanes. To count the number of regions when $K=\mathbb{R}$, note that specifying which side of the hyperplane $x_{i}-x_{j}=0$ a point $\left(a_{1}, \ldots, a_{n}\right)$ lies on is equivalent to specifying whether $a_{i}<a_{j}$ or $a_{i}>a_{j}$. Hence the number of regions is the number of ways that we can specify whether $a_{i}<a_{j}$ or $a_{i}>a_{j}$ for $1 \leq i<j \leq n$. Such a specification is given by imposing a linear order on the a_{i} 's. In other words, for each permutation $w \in \mathfrak{S}_{n}$ (the symmetric group of all permutations of $1,2, \ldots, n)$, there corresponds a region R_{w} of \mathcal{B}_{n} given by

$$
R_{w}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}: a_{w(1)}>a_{w(2)}>\cdots>a_{w(n)}\right\}
$$

Hence $r\left(\mathcal{B}_{n}\right)=n$!. Rarely is it so easy to compute the number of regions!
Note that the braid arrangement \mathcal{B}_{n} is not essential; indeed, $\operatorname{rank}\left(\mathcal{B}_{n}\right)=n-1$. When $\operatorname{char}(K) \neq 2$ the space $W \subseteq K^{n}$ of equation (1) can be taken to be

$$
W=\left\{\left(a_{1}, \ldots, a_{n}\right) \in K^{n}: a_{1}+\cdots+a_{n}=0\right\}
$$

The braid arrangement has a number of "deformations" of considerable interest. We will just define some of them now and discuss them further later. All these arrangements lie in K^{n}, and in all of them we take $1 \leq i<j \leq n$. The reader who
likes a challenge can try to compute their number of regions when $K=\mathbb{R}$. (Some are much easier than others.)

- generic braid arrangement: $x_{i}-x_{j}=a_{i j}$, where the $a_{i j}$'s are "generic" (e.g., linearly independent over the prime field, so K has to be "sufficiently large"). The precise definition of "generic" will be given later. (The prime field of K is its smallest subfield, isomorphic to either \mathbb{Q} or $\mathbb{Z} / p \mathbb{Z}$ for some prime p.)
- semigeneric braid arrangement: $x_{i}-x_{j}=a_{i}$, where the a_{i} 's are "generic."
- Shi arrangement: $x_{i}-x_{j}=0,1$ (so $n(n-1)$ hyperplanes in all).
- Linial arrangement: $x_{i}-x_{j}=1$.
- Catalan arrangement: $x_{i}-x_{j}=-1,0,1$.
- semiorder arrangement: $x_{i}-x_{j}=-1,1$.
- threshold arrangement: $x_{i}+x_{j}=0$ (not really a deformation of the braid arrangement, but closely related).
An arrangement \mathcal{A} is central if $\bigcap_{H \in \mathcal{A}} H \neq \emptyset$. Equivalently, \mathcal{A} is a translate of a linear arrangement (an arrangement of linear hyperplanes, i.e., hyperplanes passing through the origin). Many other writers call an arrangement central, rather than linear, if $0 \in \bigcap_{H \in \mathcal{A}} H$. If \mathcal{A} is central with $X=\bigcap_{H \in \mathcal{A}} H$, then $\operatorname{rank}(\mathcal{A})=$ $\operatorname{codim}(X)$. If \mathcal{A} is central, then note also that $b(\mathcal{A})=0$ [why?].

There are two useful arrangements closely related to a given arrangement \mathcal{A}. If \mathcal{A} is a linear arrangement in K^{n}, then projectivize \mathcal{A} by choosing some $H \in \mathcal{A}$ to be the hyperplane at infinity in projective space P_{K}^{n-1}. Thus if we regard

$$
P_{K}^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in K, \text { not all } x_{i}=0\right\} / \sim,
$$

where $u \sim v$ if $u=\alpha v$ for some $0 \neq \alpha \in K$, then

$$
H=\left(\left\{\left(x_{1}, \ldots, x_{n-1}, 0\right): x_{i} \in K, \text { not all } x_{i}=0\right\} / \sim\right) \cong P_{K}^{n-2}
$$

The remaining hyperplanes in \mathcal{A} then correspond to "finite" (i.e., not at infinity) projective hyperplanes in P_{K}^{n-1}. This gives an arrangement $\operatorname{proj}(\mathcal{A})$ of hyperplanes in P_{K}^{n-1}. When $K=\mathbb{R}$, the two regions R and $-R$ of \mathcal{A} become identified in $\operatorname{proj}(\mathcal{A})$. Hence $r(\operatorname{proj}(\mathcal{A}))=\frac{1}{2} r(\mathcal{A})$. When $n=3$, we can draw $P_{\mathbb{R}}^{2}$ as a disk with antipodal boundary points identified. The circumference of the disk represents the hyperplane at infinity. This provides a good way to visualize three-dimensional real linear arrangements. For instance, if \mathcal{A} consists of the three coordinate hyperplanes $x_{1}=0, x_{2}=0$, and $x_{3}=0$, then a projective drawing is given by

The line labelled i is the projectivization of the hyperplane $x_{i}=0$. The hyperplane at infinity is $x_{3}=0$. There are four regions, so $r(\mathcal{A})=8$. To draw the incidences among all eight regions of \mathcal{A}, simply "reflect" the interior of the disk to the exterior:

Figure 1. A projectivization of the braid arrangement \mathcal{B}_{4}

Regarding this diagram as a planar graph, the dual graph is the 3-cube (i.e., the vertices and edges of a three-dimensional cube) [why?].

For a more complicated example of projectivization, Figure 1 shows $\operatorname{proj}\left(\mathcal{B}_{4}\right)$ (where we regard \mathcal{B}_{4} as a three-dimensional arrangement contained in the hyperplane $x_{1}+x_{2}+x_{3}+x_{4}=0$ of \mathbb{R}^{4}), with the hyperplane $x_{i}=x_{j}$ labelled $i j$, and with $x_{1}=x_{4}$ as the hyperplane at infinity.

We now define an operation which is "inverse" to projectivization. Let \mathcal{A} be an (affine) arrangement in K^{n}, given by the equations

$$
L_{1}(x)=a_{1}, \quad \ldots, \quad L_{m}(x)=a_{m}
$$

Introduce a new coordinate y, and define a central arrangement $c \mathcal{A}$ (the cone over $\mathcal{A})$ in $K^{n} \times K=K^{n+1}$ by the equations

$$
L_{1}(x)=a_{1} y, \quad \ldots, \quad L_{m}(x)=a_{m} y, \quad y=0
$$

For instance, let \mathcal{A} be the arrangement in \mathbb{R}^{1} given by $x=-1, x=2$, and $x=3$. The following figure should explain why $c \mathcal{A}$ is called a cone.

It is easy to see that when $K=\mathbb{R}$, we have $r(c \mathcal{A})=2 r(\mathcal{A})$. In general, $c \mathcal{A}$ has the "same combinatorics as \mathcal{A}, times 2." See Exercise 1.

1.2. The intersection poset

Recall that a poset (short for partially ordered set) is a set P and a relation \leq satisfying the following axioms (for all $x, y, z \in P$):
(P1) (reflexivity) $x \leq x$
(P2) (antisymmetry) If $x \leq y$ and $y \leq x$, then $x=y$.
(P3) (transitivity) If $x \leq y$ and $y \leq z$, then $x \leq z$.
Obvious notation such as $x<y$ for $x \leq y$ and $x \neq y$, and $y \geq x$ for $x \leq y$ will be used throughout. If $x \leq y$ in P, then the (closed) interval $[x, y]$ is defined by

$$
[x, y]=\{z \in P: x \leq z \leq y\}
$$

Note that the empty set \emptyset is not a closed interval. For basic information on posets not covered here, see [18].
Definition 1.1. Let \mathcal{A} be an arrangement in V, and let $L(\mathcal{A})$ be the set of all nonempty intersections of hyperplanes in \mathcal{A}, including V itself as the intersection over the empty set. Define $x \leq y$ in $L(\mathcal{A})$ if $x \supseteq y$ (as subsets of V). In other words, $L(\mathcal{A})$ is partially ordered by reverse inclusion. We call $L(\mathcal{A})$ the intersection poset of \mathcal{A}.

Note. The primary reason for ordering intersections by reverse inclusion rather than ordinary inclusion is Proposition 3.8. We don't want to alter the well-established definition of a geometric lattice or to refer constantly to "dual geometric lattices."

The element $V \in L(\mathcal{A})$ satisfies $x \geq V$ for all $x \in L(\mathcal{A})$. In general, if P is a poset then we denote by $\hat{0}$ an element (necessarily unique) such that $x \geq \hat{0}$ for all

Figure 2. Examples of intersection posets
$x \in P$. We say that y covers x in a poset P, denoted $x \lessdot y$, if $x<y$ and no $z \in P$ satisfies $x<z<y$. Every finite poset is determined by its cover relations. The (Hasse) diagram of a finite poset is obtained by drawing the elements of P as dots, with x drawn lower than y if $x<y$, and with an edge between x and y if $x \lessdot y$. Figure 2 illustrates four arrangements \mathcal{A} in \mathbb{R}^{2}, with (the diagram of) $L(\mathcal{A})$ drawn below \mathcal{A}.

A chain of length k in a poset P is a set $x_{0}<x_{1}<\cdots<x_{k}$ of elements of P. The chain is saturated if $x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{k}$. We say that P is graded of rank n if every maximal chain of P has length n. In this case P has a rank function rk : $P \rightarrow \mathbb{N}$ defined by:

- $\operatorname{rk}(x)=0$ if x is a minimal element of P.
- $\operatorname{rk}(y)=\operatorname{rk}(x)+1$ if $x \lessdot y$ in P.

If $x<y$ in a graded poset P then we write $\operatorname{rk}(x, y)=\operatorname{rk}(y)-\operatorname{rk}(x)$, the length of the interval $[x, y]$. Note that we use the notation $\operatorname{rank}(\mathcal{A})$ for the rank of an arrangement \mathcal{A} but rk for the rank function of a graded poset.

Proposition 1.1. Let \mathcal{A} be an arrangement in a vector space $V \cong K^{n}$. Then the intersection poset $L(\mathcal{A})$ is graded of rank equal to $\operatorname{rank}(\mathcal{A})$. The rank function of $L(\mathcal{A})$ is given by

$$
\operatorname{rk}(x)=\operatorname{codim}(x)=n-\operatorname{dim}(x)
$$

where $\operatorname{dim}(x)$ is the dimension of x as an affine subspace of V.
Proof. Since $L(\mathcal{A})$ has a unique minimal element $\hat{0}=V$, it suffices to show that (a) if $x \lessdot y$ in $L(\mathcal{A})$ then $\operatorname{dim}(x)-\operatorname{dim}(y)=1$, and (b) all maximal elements of $L(\mathcal{A})$ have dimension $n-\operatorname{rank}(\mathcal{A})$. By linear algebra, if H is a hyperplane and x an affine subspace, then $H \cap x=x$ or $\operatorname{dim}(x)-\operatorname{dim}(H \cap x)=1$, so (a) follows. Now suppose that x has the largest codimension of any element of $L(\mathcal{A})$, say $\operatorname{codim}(x)=d$. Thus x is an intersection of d linearly independent hyperplanes (i.e., their normals are linearly independent) H_{1}, \ldots, H_{d} in \mathcal{A}. Let $y \in L(\mathcal{A})$ with $e=\operatorname{codim}(y)<d$. Thus y is an intersection of e hyperplanes, so some $H_{i}(1 \leq i \leq d)$ is linearly independent from them. Then $y \cap H_{i} \neq \emptyset$ and $\operatorname{codim}\left(y \cap H_{i}\right)>\operatorname{codim}(y)$. Hence y is not a maximal element of $L(\mathcal{A})$, proving (b).

Figure 3. An intersection poset and Möbius function values

1.3. The characteristic polynomial

A poset P is locally finite if every interval $[x, y]$ is finite. Let $\operatorname{Int}(P)$ denote the set of all closed intervals of P. For a function $f: \operatorname{Int}(P) \rightarrow \mathbb{Z}$, write $f(x, y)$ for $f([x, y])$. We now come to a fundamental invariant of locally finite posets.

Definition 1.2. Let P be a locally finite poset. Define a function $\mu=\mu_{P}$: $\operatorname{Int}(P) \rightarrow \mathbb{Z}$, called the Möbius function of P, by the conditions:

$$
\begin{align*}
& \mu(x, x)=1, \text { for all } x \in P \\
& \mu(x, y)=-\sum_{x \leq z<y} \mu(x, z), \text { for all } x<y \text { in } P . \tag{2}
\end{align*}
$$

This second condition can also be written

$$
\sum_{x \leq z \leq y} \mu(x, z)=0, \text { for all } x<y \text { in } P .
$$

If P has a $\hat{0}$, then we write $\mu(x)=\mu(\hat{0}, x)$. Figure 3 shows the intersection poset L of the arrangement \mathcal{A} in K^{3} (for any field K) defined by $Q_{\mathcal{A}}(x)=x y z(x+y)$, together with the value $\mu(x)$ for all $x \in L$.

A important application of the Möbius function is the Möbius inversion formula. The best way to understand this result (though it does have a simple direct proof) requires the machinery of incidence algebras. Let $\mathcal{J}(P)=\mathcal{J}(P, K)$ denote the vector space of all functions $f: \operatorname{Int}(P) \rightarrow K$. Write $f(x, y)$ for $f([x, y])$. For $f, g \in \mathcal{J}(P)$, define the product $f g \in \mathcal{J}(P)$ by

$$
f g(x, y)=\sum_{x \leq z \leq y} f(x, z) g(z, y)
$$

It is easy to see that this product makes $\mathcal{J}(P)$ an associative \mathbb{Q}-algebra, with multiplicative identity δ given by

$$
\delta(x, y)= \begin{cases}1, & x=y \\ 0, & x<y\end{cases}
$$

Define the zeta function $\zeta \in \mathcal{J}(P)$ of P by $\zeta(x, y)=1$ for all $x \leq y$ in P. Note that the Möbius function μ is an element of $\mathcal{J}(P)$. The definition of μ (Definition 1.2) is
equivalent to the relation $\mu \zeta=\delta$ in $\mathcal{J}(P)$. In any finite-dimensional algebra over a field, one-sided inverses are two-sided inverses, so $\mu=\zeta^{-1}$ in $\mathcal{J}(P)$.

Theorem 1.1. Let P be a finite poset with Möbius function μ, and let $f, g: P \rightarrow K$. Then the following two conditions are equivalent:

$$
\begin{aligned}
& f(x)=\sum_{y \geq x} g(y), \text { for all } x \in P \\
& g(x)=\sum_{y \geq x} \mu(x, y) f(y), \text { for all } x \in P
\end{aligned}
$$

Proof. The set K^{P} of all functions $P \rightarrow K$ forms a vector space on which $\mathcal{J}(P)$ acts (on the left) as an algebra of linear transformations by

$$
(\xi f)(x)=\sum_{y \geq x} \xi(x, y) f(y)
$$

where $f \in K^{P}$ and $\xi \in \mathcal{J}(P)$. The Möbius inversion formula is then nothing but the statement

$$
\zeta f=g \Leftrightarrow f=\mu g .
$$

We now come to the main concept of this section.
Definition 1.3. The characteristic polynomial $\chi_{\mathcal{A}}(t)$ of the arrangement \mathcal{A} is defined by

$$
\begin{equation*}
\chi_{\mathcal{A}}(t)=\sum_{x \in L(\mathcal{A})} \mu(x) t^{\operatorname{dim}(x)} \tag{3}
\end{equation*}
$$

For instance, if \mathcal{A} is the arrangement of Figure 3, then

$$
\chi_{\mathcal{A}}(t)=t^{3}-4 t^{2}+5 t-2=(t-1)^{2}(t-2) .
$$

Note that we have immediately from the definition of $\chi_{\mathcal{A}}(t)$, where \mathcal{A} is in K^{n}, that

$$
\chi_{\mathcal{A}}(t)=t^{n}-(\# \mathcal{A}) t^{n-1}+\cdots
$$

Example 1.4. Consider the coordinate hyperplane arrangement \mathcal{A} with defining polynomial $Q_{\mathcal{A}}(x)=x_{1} x_{2} \cdots x_{n}$. Every subset of the hyperplanes in \mathcal{A} has a different nonempty intersection, so $L(\mathcal{A})$ is isomorphic to the boolean algebra B_{n} of all subsets of $[n]=\{1,2, \ldots, n\}$, ordered by inclusion.

Proposition 1.2. Let \mathcal{A} be given by the above example. Then $\chi_{\mathcal{A}}(t)=(t-1)^{n}$.
Proof. The computation of the Möbius function of a boolean algebra is a standard result in enumerative combinatorics with many proofs. We will give here a naive proof from first principles. Let $y \in L(\mathcal{A}), r(y)=k$. We claim that

$$
\begin{equation*}
\mu(y)=(-1)^{k} . \tag{4}
\end{equation*}
$$

The assertion is clearly true for $\operatorname{rk}(y)=0$, when $y=\hat{0}$. Now let $y>\hat{0}$. We need to show that

$$
\begin{equation*}
\sum_{x \leq y}(-1)^{\mathrm{rk}(x)}=0 \tag{5}
\end{equation*}
$$

The number of x such that $x \leq y$ and $\operatorname{rk}(x)=i$ is $\binom{k}{i}$, so (5) is equivalent to the well-known identity (easily proved by substituting $q=-1$ in the binomial expansion of $\left.(q+1)^{k}\right) \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}=0$ for $k>0$.

