Instructions: Solve your favourite problems from the list below. Open problems are marked with is ; hard (but feasible) problems are marked with \star.

1. Let $a(P)$ denote the number of angles determined by ordered triples of a set P of non-collinear points in the plane. (We count angles $0^{\circ} \leq \angle\left(p_{1}, p_{2}, p_{3}\right)<180^{\circ}$.) For $n \in \mathbb{N}, n \geq 3$, let $a(n)=\min _{|P|=n} a(P)$.
(a) For every $n \in \mathbb{N}, n \geq 3$, find a set P_{n} of n points such that $a\left(P_{n}\right)=n-2$.
(b) Show that $a(n)=\Omega(n)$.
(c) Prove or disprove that $a(n)=n-2$. is
2. Prove the Sylvester-Gallai Theorem for a system of non-concurrent pseudo-lines in the plane: You are given a set of curves in the plane such that any two curves intersect in exactly one point, and no point is incident to all the curves. Show that there is a point incident to exactly two curves.
3. We are given n points and ℓ curves or surfaces in $\mathbb{R}^{d}, d \geq 2$. For any two real numbers $a, b>1$, find two reals $e, f \in \mathbb{R}$ (in terms of a and b) such that

$$
\#(k-\text { rich lines })=O\left(\frac{n^{a}}{k^{b}}\right), \quad \forall k \in \mathbb{N} \Leftrightarrow \#(\text { incidences })=O\left(n^{e} \ell^{f}\right)
$$

4. (Elekes) Let X and Y be two sets of n real numbers $(X, Y \subset \mathbb{R},|X|=|Y|=n)$. Consider the Cartesian product $P=X \times Y=\left\{(x, y) \in \mathbb{R}^{2}: x \in X, y \in Y\right\}$ in the plane. Show that the number of collinear triples of P is at most $O\left(n^{4} \log n\right)$.
5. (Erdős) Consider n points in an integer lattice section $P=\left\{(a, b) \in \mathbb{N}^{2}: 1 \leq a \leq\right.$ $\sqrt{n}, 1 \leq b \leq \sqrt{n}\}$ in the plane. Show that for every $\ell \in \mathbb{N}, \ell \geq \sqrt{n}$, there are ℓ lines in the plane such that the number of incidences with P is at least $\Omega\left(n^{2 / 3} \ell^{2 / 3}+n+\ell\right)$.
6. (Valtr, 2005) Let ∂B denote the boundary curve of a convex compact body B. Find a strictly convex compact body B in the plane with the following property: There are n translates of ∂B and n points in the plane such that the number of point-curve incidences is at least $\Omega\left(n^{4 / 3}\right)$. 夫
7. We are given n points and ℓ circles in the plane such that exactly x pairs of circles intersect. Show that the number of point-circle incidences is at most $O\left(n^{2 / 3} x^{1 / 3}+n+\ell\right)$.
8. Given a set S_{n} of n points in the plane, let $g\left(S_{n}\right)$ denote the number of unit peremeter triangles (that is, triangles where the sum of the three edge lengths is one).
(a) Show that $g\left(S_{n}\right)=O\left(n^{7 / 3}\right)$.
(b) Show that $g\left(S_{n}\right)=O\left(n^{16 / 7}\right)$. \star
9. (Hanani, 1934) If any two edges of a topological graph cross an even number of times, then the graph is planar. \star
