Instructions: Solve your favourite problems from the list below. Open problems are marked with is ; hard (but feasible) problems are marked with \star.

1. (Székely, 1997) For a simple graph G and $k \in \mathbb{N}$, let $k G$ denote the graph obtained from G by replacing every edge by k parallel edges. Show that $k^{2} \cdot \operatorname{cr}(G)=\operatorname{cr}(k G)$.
2. For $t \in \mathbb{N}$, we are given an alphabet of size t and a string s of 2^{t} letters. Find a (nonempty) substring s^{\prime} of consecutive letters from s such that each letter occurs in s^{\prime} an even number of times.
3. (Djidjev and Vrt́o, 2003) Given a simple topological graph $G(V, E, D)$, where D stands for the planar embedding of the graph, let $\ell(D)$ be the maximum number of edges crossed by a vertical line. The cut width $\mathrm{cw}(G)$ of a simple graph $G(E, V)$ is defined as the minimum $\ell(D)$ over all drawings D in which the vertices have distinct x-coordinates. (a) Show that $\mathrm{bw}(G) \leq \mathrm{cw}(G)$. (b) Show that

$$
\operatorname{cr}(G)=\Omega\left(\operatorname{cw}^{2}(G)\right)-O\left(\sum_{p \in V} \operatorname{deg}^{2}(p)\right) .
$$

4. (a) For every $k \in \mathbb{N}$, construct a graph whose crossing number is k.
(b) For every $k \in \mathbb{N}$, find a graph $G(V, E)$ and an edge $p q \in E$ such that $\operatorname{cr}(G)=k$ but $G^{\prime}(V, E \backslash\{p q\})$ is planar.
(c) Find 3-regular graphs $G(E, V)$ such that $\operatorname{cr}(G)=1$, but $G^{\prime}(V, E \backslash\{p q\})$ is planar for any edge $p q \in E$.
(d) Every 3-regular graph $G(V, E)$ has an edge $p q \in E$ such that the crossing number of $G^{\prime}(V, E \backslash\{p q\})$ is at least $\Omega(\operatorname{cr}(G))-O(1)$. 夫
(e) (Richter and Thomassen, 1993) Show (d) for simple graphs. \star
5. K is a complete geometric graph with n vertices, each edge is colored red or blue.
(a) (Bialostocki and Dierker) Show that K contains a monochromatic spanning tree with pairwise non-crossing edges if V forms the vertex set of a convex n-gon.
(b) (Károlyi et al., 1997) Show that K contains a monochromatic spanning tree with pairwise non-crossing edges. \star
(c) Show that K contains $\lfloor(n+1) / 3\rfloor$ pairwise disjoint edges of the same color.
(d) Color the edges of a complete graph K_{n} with two colors such that there are no $\lfloor(n+1) / 3\rfloor+1$ pairwise disjoint edges of the same color.
6. Let lin- $\operatorname{cr}(G)$ denote the rectilinear crossing number of G, which is the minimum number of crossings in a drawing of G with all edges drawn as straight line segments.
(a) Show that if $\operatorname{cr}(G)=1$, then $\operatorname{lin}-\operatorname{cr}(G)=1$.
(b) Find a simple graph where $\operatorname{cr}(G)<\operatorname{lin}-\operatorname{cr}(G) . \star$
