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Abstract―For any simple graph G = (V, E), we can define four

types of crossing number: crossing number, rectilinear crossing num-

ber, odd-crossing number, and pairwise crossing number. We discuss

the relationship of them.

1 INTRODUCTION

The concept “drawing”is defined in a variety of distinct ways in the literature.

In this paper, we use the definition in the paper by Pach and Tóth [1].

A drawing D of a simple graph G is a mapping f of the vertices and edges of G

to the plane, assigning to each vertex a distinct point in the plane and to each

edge uv a continuous arc (i.e. a homeomorphic image of a closed interval), which

is called an edge of the drawing D, connecting f(u) and f(v), and satisfying

1. A edge of D doesn’t pass through the image of a vertex other than its

endpoints.

2. Two edges of D have a finite number of intersection points.

3. Any intersection of two edges of D is a proper crossing.

4. No three edges of D have a common intersection point.
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In such a drawing, the intersection of two edges is called a crossing (a common

endpoint of two edges does not count as a crossing). Now we can define the four

types of crossing number.

DEFINITION. Let G be a simple graph.

1. The crossing number of G, cr(G), is the minimum number of crossings over

all drawing of G.

2. The rectilinear crossing number of G, lin− cr(G), is the minimum number

of crossings in any drawing of G, where every edge is represented by a line

segment.

3. The odd-crossing number of G, odd− cr(G), is the minimum number of pairs

of edges with odd number of crossings over all drawings of G.

4. The pairwise crossing number of G, pair− cr(G), is the minimum number

of pairs of crossing edges over all drawing of G.

Clearly, we have the following inequality.

THEOREM 1. For any simple graph G, we have

odd− cr(G) ≤ pair− cr(G) ≤ cr(G) ≤ lin− cr(G).

PROOF. It’s trivial that odd− cr(G) ≤ pair− cr(G) and cr(G) ≤ lin− cr(G).

It’s enough to show that pair− cr(G) ≤ cr(G). And it’s also obvious since we

have the following trivial lemma.

LEMMA. For any graph G, there exists a drawing satisfying that there are cr(G)

crossings, and every pair of edges crosses at most once. ¤

In the following sections, we discuss some details of the relationship of these four

kinds of crossing numbers.
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2 PLANARITY

It’s obvious that a simple graph G is planar if and only if cr(G) = 0. In this sec-

tion, we will show that a simple graph G is planar if and only if any one of these

four crossing numbers of G is zero. It’s enough to prove the following two theorem.

THEOREM 2. For any simple graph G, if the crossing number of G is zero,

then the rectilinear crossing number of G is zero, i.e. cr(G) = 0 ⇒ lin− cr(G) = 0.

THEOREM 3. For any simple graph G, if the odd-crossing number of G is zero,

then the crossing number of G is zero, i.e. odd− cr(G) = 0 ⇒ cr(G) = 0.

2.1 RECTILINEAR CROSSING NUMBER

First, we prove another somewhat stronger theorem in order to show Theorem 2.

THEOREM 4.[2] G is a simple planar graph, and in a planar drawing D of G

1. Every interior vertex, i.e. not the vertices of the unbounded face, has degree

at least 3.

2. Each bounded face of D is simply connected.

3. The intersection of two bounded faces is empty or connected.

Then there is a convex polygonal drawing D′ of G, i.e. each bounded face in D′

is a convex polygon.

The key point of the proof is the following lemma.

LEMMA. If drawing D of planar graph G, which has at least two bounded faces,

satisfies 1), 2) and 3), then there are two bounded faces of D, say A and B, such

that A and B touch on an arc and for any other bounded face C of D the set

(A ∪B) ∩ C is connected or empty.
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PROOF OF THE LEMMA. Assume, for contradiction, that for every two

bounded faces A and B which touch on an arc, there is a third bounded face C so

that (A ∪ B) ∩ C is not connected. Then the boundary of A ∪ B ∪ C consists of

two simple closed cycle, P1 and P2, and P1 lies inside P2.

Assume that the bounded faces A, B, and C satisfy the conditions above and the

interior of P1 has the minimum area over all possible A,B,C.

There must exist further faces interior to P1, and at least one of them, say B′,

touches A on an arc. Thus there is a face C ′ such that (A ∪ B′) ∩ C ′ is not

connected. The boundary of A ∪ B′ ∪ C ′ consists of two simple closed cycle, P ′
1

and P ′
2, and P ′

1 lies inside P ′
2.

Since both B′ and C ′ lie inside P1, P ′
1 also lies inside P1. Then the area of the in-

terior of P ′
1 is smaller than that of P1, contradiction! ¤

PROOF OF THEOREM 4. We show it by induction on m, the number of

bounded faces of D.

Basis. For m = 1, it is trivial.

Induction Step. Assume the theorem is true for m− 1 faces planar graph. Let D

be the drawing, satisfying 1), 2) and 3), of simple planar graph G with m bounded

faces.

By the lemma, there are two faces A and B touching on an arc v1v2, and (A∪B)∩C

is connected or empty for all bounded face C of D.

Remove edge v1v2 and make A and B into a single bounded face A′. Then there is

a convex polygonal drawing D′′ of G−{v1v2}, in which face A′ is a convex polygon.

Add the line segment v1v2 in this polygon, then we get a convex polygonal drawing

D′ of G. ¤

PROOF OF THEOREM 2. For any simple graph G, if cr(G) = 0, then G is

planar. In planar drawing D of G, each bounded face of D is simply connected,

so it satisfies 2). For each interior vertex with degree 1, remove this vertex and

the edge adjacent to it; for each interior vertex with degree 2, remove this vertex

and make the two edges adjacent to it to one edge. For any two bounded faces A

and B with not connected intersection, you can add several edges and cut A and

B to several parts to make sure this won’t happen. After these operations, we get
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a planar drawing D′ of another simple graph G′, which satisfies 1), 2) and 3). So

that, by Theorem 4, we have a convex polygonal drawing D′′ of G′. In D′′, we

delete the edges we’ve added, add back the vertices of degree 2 as the midpoints

of the corresponding line segments, and then add the vertices of degree 1 and

the edge adjacent to it. Finally, we have a drawing of G, in which every edge is

represented by a line segment. Thus lin− cr(G) = 0. ¤

2.2 ODD-CROSSING NUMBER

In [9], Tutte has given these two theorems.

THEOREM 5.(KURATOWSKI’S THEOREM) A graph G is planar if and

only if no subgraph of G is a subdivision of a K5 or a K3,3.

THEOREM 6. In any planar representation of a subdivision G of K5 or K3,3,

there are two edges, derived from non-adjacent edges of K5 or K3,3, which cross

odd number of times.

By these two theorems, we can know that if odd− cr(G) = 0, G doesn’t contain

a subdivision of K5 or K3,3 as a subgraph, then G is planar. Thus cr(G) = 0.

3 DIFFERENCE

We already know that for any simple graph G, odd− cr(G) ≤ pair− cr(G) ≤
cr(G) ≤ lin− cr(G), and if any one of these four is equal to zero then all are equal

to zero. Are they the same for any simple graph?

The problem that whether pair− cr(G) = cr(G) turns out to be quite challeng-

ing, and remains open. But there are simple graphs with cr(G) 6= lin− cr(G) or

odd− cr(G) 6= pair− cr(G).
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3.1 COMPLETE GRAPH

Guy’s conjecture (cf. [3]) said that the crossing number for the complete graph

Kn is

cr(Kn) =
1

4
bn
2
cbn− 1

2
cbn− 2

2
cbn− 3

2
c (1)

Here is a construction which shows that (1) is an upper bound. (cf. [4])

CONSTRUCTION. Partition the n vertices into u and v vertices with u+v = n

and v = u or v = u+1. Arrange the u vertices on a circle, and the other v vertices

on another circle, outside the first one. Connect any two pair of the u vertices by

line segments, and that of the v vertices by arcs outside the outer circle. Connect

one of the u vertices to each of the v vertices clockwise, then pick the next one

of the u vertices anti-clockwise and connect it to each of the v vertices clockwise

but start with the anti-clockwise one of the former start point. Repeat until all

u vertices are connected to all v vertices. Then the number of crossings between

the two circles cr′(Kn) is

cr′(Kn) =





1
6
u2(u− 1)(u− 2), if v = u

1
6
(u + 1)u(u− 1)2, if v = u + 1

Adding these to
(

u
4

)
+

(
v
4

)
gives that

cr(Kn) ≤ 1

4
bn
2
cbn− 1

2
cbn− 2

2
cbn− 3

2
c =





1
64

n(n− 2)2(n− 4), if n is even

1
64

(n− 1)2(n− 3)2, if n is odd

¤

For n ≤ 10, (1) has been proved in [5]

n 2 3 4 5 6 7 8 9 10

cr(Kn) 0 0 0 1 3 9 18 36 60
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And also in [5], Guy has shown that lin− cr(K8) = 19 > 18 = cr(K8). So that

there exists simple graph G such that lin− cr(G) 6= cr(G).

Moreover, in [6], it was said that lin− cr(Kn) = cr(Kn) if and only if n ≤ 7 or

n = 9.

3.2 MAP CROSSING NUMBERS

In [10], M. J. Pelsmajer, M. Schaefer, and D. Štefankovič have shown that odd-

crossing number and pairwise crossing number are not the same. They defined

a new kind of crossing number: map crossing number. They gave counterex-

ample to odd− cr(M) = pair− cr(M) for maps on the annulus, then trans-

lated the map counterexample into a finite family of simple graphs for which

odd− cr(G) < pair− cr(G).

THEOREM 7.[10] There are simple graphs G which satisfy

odd− cr(G) ≤ (

√
3

2
+ o(1))pair− cr(G).

4 RESTRAINT

We proved that odd-crossing number, crossing number, and rectilinear crossing

number are not the same. But how different are they?

It was shown by Bienstock and Dean in [7] that there are graphs with crossing

number 4 and arbitrarily large rectilinear crossing number. Is this also true for

odd-crossing number and crossing number, or for pairwise crossing number and

crossing number?
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At first, we give another theorem without proof, then we use this theorem to prove

two restraint of crossing number with odd-crossing number and pairwise crossing

number.

THEOREM 8.[1] For a fixed drawing of a simple graph G, let G0 ⊆ G denote the

subgraph formed by all even edges ( an even edge is a edge which crosses every

other edge an even number of times ). Then G can be drawn in such a way that

the edges belonging to G0 are not involved in any crossing.

THEOREM 9.[1] The crossing number of any simple graph G satisfies that

cr(G) ≤ 2(odd− cr(G))2 ≤ 2(pair− cr(G))2.

PROOF. Let D be a drawing of G with m = odd− cr(G) pairs of edges that cross

an odd number of times. Let E0 ⊆ E denote the set of even edge. Then |E−E0| ≤
2m. By Theorem 8, there exists a drawing of G,in which no edge of E0 is involved

in any crossing. Choose a drawing D′ with this property and minimum number of

crossings, then any two edges cross at most once. Thus cr(G) ≤ (|E−E0|
2

) ≤ (
2m
2

) ≤
2m2. ¤

THEOREM 10.[8] The crossing number of any simple graph G satisfies that

cr(G) ≤ O( k2

log k
), where k = pair− cr(G).

SKETCH OF PROOF. G is a simple graph.

1 Let D0 be a drawing of G with k pairs of edges that cross. Let t =
1

2
log k.

(1) E0 is the set of edges with no crossing.

(2) E1 is the set of edges crossing at most t edges.

(3) E2 is the set of edges crossing more than t edges.

2 Drawing D1 is:

(1) E0 as in D0.
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(2) Any edge of E1 crosses at most t other edges and minimize the number

of crossings.

(3) Edges in E2 satisfy

i. No crossing between E0 and E2.

ii. minimize the number of crossings between E1 and E2.

iii. minimize the number of crossings among E2.

3 Claim. In D1

(1) Any edge of E1 crosses at most 2t times with edges of E1.

(2) Any edge of E2 crosses any other edge at most once.

4 Finally, We have cr(G) ≤ O(2t|E1|+ |E2|(|E1|+ |E2|)) ≤ O(2t2k + 2k
t
2k) ≤

O( k2

log k
). ¤

By these two restraint of crossing number, we know that a simple graph with fixed

odd-crossing number ( or pairwise crossing number ) cannot have arbitrarily large

crossing number.
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