Open problems are marked with $\hat{\Sigma}$; hard (but feasible) problems are marked with \star.

1. (Radon, 1952) Every set of $d+2$ points in \mathbb{R}^{d} can be partitioned into two subsets such that their convex hulls intersect.
2. (Las Vergnas \& Lovász, 1972) You are given a finite range space (X, R) such that for every $k \in \mathbb{N}$, the union of every k ranges contains at least $k+1$ elements. Show that there is a 2-coloring of X such that no range is monochromatic
3. (a) (Spencer, 1985) Given a range space (X, R) with $|X|=|R|=n$, show that its discrepancy is $\operatorname{disc}(R)=O(\sqrt{n})$.
(b) (Beck, 1981) Given the range space (X, R) where $X=\{1,2, \ldots, n\}$ and R is the set of all arithmetic progressions over X, prove that $\operatorname{disc}(R)=O\left(n^{1 / 4} \operatorname{polylog} n\right)$. $\star \star$
4. (a) Every set of n disjoint unit disks in the plane has a BSP of size $O(n)$.
(b) Every set of n disjoint disks in the plane has a BSP of size $O(n)$.
(c) (de Berg, 2000) For every $d \in \mathbb{N}$, every set of n disjoint fat objects in \mathbb{R}^{d} has a BSP of size $O(n)$. (An object is fat if the ratio of the radii of the smallest enclosing and largest inscribed balls is bounded by a constant.)
5. (a) (Patterson \& Yao, 1990) Every set of n pairwise disjoint axis-parallel lines in \mathbb{R}^{3} has a BSP of size $O\left(n^{3 / 2}\right)$. Find n disjoint axis-parallel lines in \mathbb{R}^{d} such that any BSP for them has size $\Omega\left(n^{3 / 2}\right)$.
(c) The BSP-complexity of n disjoint axis-aligned rectangles in \mathbb{R}^{3} is $\Theta\left(n^{3 / 2}\right)$.
(d) (Dumitrescu, Mitchell, and Sharir, 2004) The BSP-complexity of n disjoint axisaligned 2-flats (i.e., 2-dimensional rectangles) in \mathbb{R}^{4} is $\Theta\left(n^{5 / 3}\right)$. 夫
(e) The BSP-complexity of n disjoint axis-parallel lines in \mathbb{R}^{d} is $\Theta\left(n^{\frac{d}{d-1}}\right)$.
(f) What is the BSP-complexity of n disjoint axis-aligned 3-flats in \mathbb{R}^{5}; is in \mathbb{R}^{6} ? is
6. (a) (Pach \& Pinchasi, 2005) Every set of n pairwise disjoint line segments in the plane has a subset of $\ell=\Omega\left(n^{1 / 3}\right)$ segments that can be completed to a noncrossing simple path of 2ℓ vertices by adding $\ell-1$ new line segments between their endpoints.
(b) There is a set of n pairwise disjoint line segments in the plane such that no subset of $\ell=2\lfloor\sqrt{2 n}\rfloor+1$ segments can be completed to a noncrossing simple path this way.
7. (Aichholzer et al., 2004) The number of pointed pseudo-triangulations is minimized for point sets in convex position.
8. (Kettner et al., 2003) Every finite point set in general position in the plane has a pointed pseudo-triangulation
(a) whose maximum vertex degree is five;
(b) whose maximum face degree is four.
