Instructions: Solve your favourite problems from the list below. Open problems are marked with $\hat{\Sigma}$; hard (but feasible) problems are marked with \star.

1. Find all planar point configurations with n points that determine exactly n distinct lines for $n \in \mathbb{N}, n \geq 4$.
2. (Motzkin, 1951)
(a) For every $n \in \mathbb{N}, n \geq 6$, find n points in \mathbb{R}^{3}, not all in a plane, such that the plane determined by any three noncollinear points contains at least four points.
(b) Find a finite point set in the complex plane \mathbb{C}^{2} that does not lie in a complex line and the complex line determined by any two points contains at least three points. \star
3. (Motzkin, 1951) Given a point set P in $\mathbb{R}^{d}, d \geq 2$, we say that a hyperplane h is ordinary if all but at most one points of $h \cap P$ lie in a $(d-2)$ dimensional affine subspace. Show that there is an ordinary hyperplane for any finite set of points in \mathbb{R}^{d}, $d \geq 2$.
4. (Kelly-Moser, 1958) Find 7 points in the plane with exactly 3 ordinary lines. (McKee, 1968) Find 13 points in the plane with exactly 6 ordinary lines.
5. (Jamison, 1986) Given a set V of n points in the plane, not all on a line, show that there is a connected graph drawn in the plane with straight line edges such that its vertex set is V and its edges have pairwise different slopes.
6. (Jamison, 1987) Given a set V of $n \in \mathbb{N}$ points in the plane, no three of which are collinear, and an (abstract) graph G with n vertices. Is there a straight line embedding of G into the plane such that the vertices of G are mapped onto V and the edges of G are pairwise nonparallel if
(a) G is a path and V forms a regular n-gon;
(b) G is a path; \star
(c) G is a tree and V is in convex position; is
(d) G is a tree? ix
7. (Hopf-Pannwitz, 1934) Show that any n points in the plane, no three of which are collinear, determine at most n pairwise intersecting (closed) line segments.
8. Given a set P of $2 n$ noncollinear points in the plane, let $h(P)$ denote the number of its halving lines (i.e., lines spanned by P such that either of their open halfplanes contains less than n points). Let $d_{1}, d_{2}, \ldots, d_{h(P)}$ be the number of points on each of these halving lines. Give a lower bound for the number of distinct slopes determined by P in terms of $d_{1}, d_{2}, \ldots, d_{h(P)}$.
9. How many distinct slopes are determined by the point set $\left\{(a, b) \in \mathbb{N}^{2}: 1 \leq a, b \leq n\right\}$ (i.e., the $n \times n$ integer lattice section)? How is it about $\left\{(a, b, c) \in \mathbb{N}^{3}: 1 \leq a, b, c \leq n\right\}$ in three dimensions?

Brush up exercise on point-line duality in the plane. The point-line duality is a bijection between points and nonvertical lines in the Euclidean plane defined by

$$
\begin{aligned}
p(a, b) & \longleftrightarrow p^{*}: y+a x+b=0, \\
\ell: y+a x+b=0 & \longleftrightarrow \ell^{*}(a, b) .
\end{aligned}
$$

- Show that point p is incident to line ℓ if and only if point ℓ^{*} is incident to line p^{*}.
- Show that point p lies above line ℓ if and only if line p^{*} passes below point ℓ^{*}.
- What is the dual of a line segment $p_{1} p_{2}$?
- Formulate the dual statement for "The closed line segments $p_{1} p_{2}$ and $q_{1} q_{2}$ intersect."
- Formulate the dual statement for "Point sets A and B are separated by a vertical line."
- What is the dual of the inner diagonals of two point sets, A and B, separated by a vertical line?

