Open problems are marked with is; hard (but feasible) problems are marked with \star. Problems from Matoušek's textbook on Discrete Geometry are marked with .

1. (Asano et al., 1999) You are given a finite set S of pairwise disjoint line segments in the plane and a curve γ that intersects every segment in S. Consider a point p outside of the convex hull of γ. Show that there is a point $q \in \gamma$ such that the line segment $p q$ is disjoint from all segments of S.
2. You are given a set P of n noncollinear points in the plane.
(a) (Ungar) Show that there is a line ℓ such that P determines at least one but at most $(n-1) / 2$ line segments parallel to ℓ.
(b) (Burton \& Purdy) Show that there are two points $p, q \in P$ such that the number of distinct distances of the points of P from the line $p q$ is at least $.4 n-O(1)$.
3. Suppose that for every $n \in \mathbb{N}$, n even, you can find an n-element point set in the plane with $f(n)$ halving edges. (a) Show that for every $k, n \in \mathbb{N}, k \leq n / 2$, there are n points in the plane such that the number of k-edges is at least $\Omega(\lfloor n / 2 k\rfloor f(2 k))$.
(b) Show that for infinitely many $n \in \mathbb{N}$, there are n points in \mathbb{R}^{3} with $\Omega(n f(n))$ halving triangles.
4. (Lovász) You are given a set P of $2 n$ points in the plane in general position, and a vertical line ℓ having exactly k points on the left and exactly $2 n-k$ points on the right. Prove that ℓ crosses exactly $\min (k, 2 n-k)$ halving edges of P.
5. (Welzl) Let $t(n)$ denote the maximum number of halving triangles for a set of n points in \mathbb{R}^{3}. Show that for every $n \in \mathbb{N}$, there is a set P_{n} of n points in convex position in \mathbb{R}^{3} that has $t(n)$ halving triangles. \star
6. (Pach \& Pinchasi) R is a set of n red points, and B is a set of n blue points in the plane such that $B \cap R=\emptyset$ and $R \cup B$ is in general position. A line ℓ is called balanced if ℓ passes through a red point and a blue point, and each open half-plane bounded by ℓ contains the same number of blue points as red points. Show that there are at least n balanced lines.
7. Consider an arrangement of n circles in the plane and a parameter $r \in \mathbb{N}, 1 \leq r \leq n / 2$. Show that there is a partition of the plane into $O\left(r^{2} \log ^{2} r\right)$ regions, each bounded by a finite number of straight line segments and circular arcs, such that the interior of each region intersects at most n / r circles.
8. (a) Determine the VC-dimension of the range space $\left(\mathbb{R}^{2}, T\right)$, where T is the set of all triangles in the plane.
(b) (Kalai \& Matoušek) Let S be a simply connected compact set in the plane. For every point $s \in S$, let $V(s)=\{p \in S$: the segment $p s$ lies in $S\}$ be the visibility range of s. Show that the range space $(S,\{V(s): s \in S\})$ has finite VC-dimension.
