Problems from Matoušek's textbook on Discrete Geometry are marked with ; hard (but feasible) problems are marked with \star.

1. (a) Prove that the maximum length of the Davenport-Schinzel sequence of order 2 over an alphabet of n letters is $\lambda_{2}(n)=2 n-1$.
(b) Show that for every n and $s, \lambda_{s}(n) \leq 1+(s+1)\binom{n}{2}$.
(c) Show that the lower envelope of n half-lines in the plane has $O(n)$ complexity.
2. Let $P_{1}, P_{2}, \ldots, P_{m}$ be convex polygons in the plane such that their vertex sets are disjoint (but the polygons are not necessarily disjoint). Assume that there are a total of n vertices and they are in general position. Show that the number of lines intersecting all polygons and tangent to exactly two of them is $O\left(\lambda_{3}(n)\right)$.
3. Consider a cell C in an arrangement of n line segments in the plane. Let $|C|$ denote the complexity of the boundary of C.
(a) Show that $|C|=O\left(\lambda_{4}(n)\right)$.
(b) Show that $|C|=O\left(\lambda_{3}(n)\right)$. \star
4. You are given a function $\psi: \mathbb{N}^{2} \rightarrow \mathbb{N}$ that satisfies $\psi(2, n)=2 n$ and the property that for every $p \in \mathbb{N}, 1 \leq p \leq m$, there are $n_{1}, n_{2} \in \mathbb{N}$ such that $n=n_{1}+n_{2}$ and

$$
\psi(m, n) \leq 4 m+4 n_{2}+\psi\left(p, n_{2}\right)+p \cdot \psi\left(\lceil m / p\rceil,\left\lfloor n_{1} / p\right\rfloor\right) .
$$

(a) Prove that $\psi\left(2^{j}, n\right) \leq 4 j \cdot 2^{j}+6 n$, for $j \geq 1$. (b) Show $\psi(2 n, n)=O\left(n \log ^{*} n\right)$. \star
5. Let ex (n, M) denote the maximum number of 1 entries in an $n \times n$ size 0-1 matrix that does not contain as submatrix any matrix of the family M. (a) (Füredi-Hajnal, 1992) $\operatorname{ex}(n, A)=\lambda_{3}(n)+O(n) . \star(\mathrm{b})$ (Füredi, Bienstock-Győri, 1990) ex $(n, B)=\Theta(n \log n)$.

$$
A=\left(\begin{array}{cccc}
1 & * & 1 & * \\
* & 1 & * & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
* & 1 & 1 \\
1 & * & 1
\end{array}\right)
$$

6. (a) Count the edges in the arrangement of n planes in general position in \mathbb{R}^{3}.
(b) Express the number of k-dimensional faces in an arrangement of n hyperplanes in general position in \mathbb{R}^{d} in terms of d, k, and n.
(c) Prove that for every fixed $d \in \mathbb{N}$ the number of unbounded cells in an arrangement of n hyperplanes is $O\left(n^{d-1}\right)$.
7. (Shrivastava) In the arrangement of n lines in the plane, consider the k-level and the ($2 k$)-level for some $k \in \mathbb{N}, 1 \leq k \leq n / 2$. Show that there is a curve along the lines of the arrangement that separates these two levels and consists of $O(n / k)$ line segments.
8. (Sharir, 2001) Consider an arrangement of n lines in the plane. Let S be the largest subset of vertices such that none of the lines passes below more than k points of S.
(a) Show that $|S|=O(n \sqrt{k})$.
(b) Find an arrangement where $|S|=\Omega(n \sqrt{k})$.
(c) For n points in general position in the plane, C is a set of circles such that each circle passes through three points and contains at most k points. Show that $|C|=O\left(n k^{2 / 3}\right)$.
