Chapter 9

Optimization

9.1 Regularization and sparsity

9.2 Dimensionality reduction techniques

One way to reduce the dimensionality of a dataset is to scramble data as $\widetilde{d}=C d$, where

$$
\widetilde{d}_{j, r}(t)=\sum_{s} c_{j, s} d_{r, s}\left(t-b_{j, s}\right) .
$$

The numbers $c_{j, s}$ and $b_{j, s}$ may be random, for instance. The point is that using fewer values of j than s may result in computational savings - a strategy sometimes called source encoding. By linearity of the wave equation, the scrambled data \widetilde{d} can be seen as originating from scrambled shots, or supershots $\widetilde{f}=C f$, for

$$
\tilde{f}_{j}(x, t)=\sum_{s} c_{j, s} f_{s}\left(x, t-b_{j, s}\right)
$$

Scrambled data may be all that's available in practice, in acquisition scenarios known as simultaneous sourcing.

The adjoint operation C^{*} results in twice-scrambled data $D=C^{*} \widetilde{d}$, where

$$
D_{r, s}(t)=\sum_{j} c_{j, s} \tilde{d}_{j, r}\left(t+b_{j, s}\right)
$$

The linearized forward model with scrambling is $\underset{\sim}{\widetilde{d}}=C F m$. The basic imaging operator is still the adjoint, $I_{m}=F^{*} C^{*} \widetilde{d}$. In addition to the
traditional incident and adjoint fields

$$
u_{0, s}=G f_{s}, \quad q_{s}=\bar{G} d_{s},
$$

where G is the Green's function in the unperturbed medium, and \bar{G} the time-reversed Green's function, we define the scrambled fields

$$
\widetilde{u}_{0, j}=G \widetilde{f}_{j}, \quad \widetilde{q}_{j}=G \widetilde{d}_{j} .
$$

Also define the twice-scrambled adjoint field

$$
Q_{s}=G\left(C^{*} \widetilde{d}\right)_{s}
$$

Then

$$
I_{m}(x)=\left(F^{*} C^{*} \widetilde{d}\right)(x)=-\sum_{s} \int_{0}^{T} \frac{\partial^{2} u_{0, s}}{\partial t^{2}}(x, t) Q_{s}(x, t) d t
$$

Another formula involving j instead of s (hence computationally more favorable) is

$$
\begin{equation*}
I_{m}(x)=-\sum_{j} \int_{0}^{T} \frac{\partial^{2} \widetilde{u}_{0, j}}{\partial t^{2}}(x, t) \widetilde{q}_{j}(x, t) d t \tag{9.1}
\end{equation*}
$$

To show this latter formula, use $Q=C^{*} \widetilde{q}$, pass C^{*} to the rest of the integrand with $\sum_{s} v_{s}\left(C^{*} w\right)_{s}=\sum_{j}\left(C v_{j}\right) w_{j}$, and combine $C u_{0}=\widetilde{u}_{0}$.

Scrambled data can also be used as the basis of a least-squares misfit, such as

$$
\widetilde{J}(m)=\frac{1}{2}\|\widetilde{d}-C \mathcal{F}(m)\|_{2}^{2}
$$

The gradient of \widetilde{J} is $F^{*} C^{*}$ applied to the residual, hence can be computed with (9.1).

MIT OpenCourseWare
https://ocw.mit.edu

18.325 Topics in Applied Mathematics: Waves and Imaging

 Fall 2015For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

