
Chapter 8

Microlocal analysis of imaging

In this chapter we consider that the receiver and source positions (xr, xs) are
restricted to a vector subspace Ω ⊂ R6, such as R2 × R2 in the simple case (!)
when xr,3 = xs,3 = 0. We otherwise let xr and xs range over a continuum of
values within Ω, which allows us to take Fourier transforms of distributions
of xr and xs within Ω. We call Ω the acquisition manifold, though in the
sequel it will be a vector subspace for simplicity1.

8.1 Preservation of the wavefront set

In this section we show that, in simple situations, the operators F and F ∗ de-
fined earlier have inverse kinematic behaviors, in the sense that the respective
mappings of singularities that they induce are inverses of one another.

The microlocal analysis of F and F ∗ hinges on the mathematical notion
of wavefront set that we now introduce. We start by describing the charac-
terization of functions with (or without) singularities.

Nonsingular functions are infinitely differentiable, hence have Fourier
transforms that decay “super-algebraically”.

Lemma 1. Let u ∈ C∞0 (Rn). Then, for all N > 0,

|û(k)| ≤ CN(1 + |k|2)−N .

1The Fourier transform can still be defined for functions on general manifolds, but
this involves patches, a partition of unity, and many distractions that we prefer to avoid
here. The microlocal theory presented here carries over mostly unchanged to the manifold
setting.
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Proof. In the Fourier integral defining û(k), insert N copies of the differential
operator L = I−∆x of ix

| means
k|2 by the identity e ·k = LNeix·k. Integrate by

1+

parts, pull out the (1 + |k|2)−N factor, and conclude by boundedness of u(x)
and all its derivatives.

A singularity occurs whenever the function is not locally C∞.

Definition 2. Let u ∈ S ′(Rn), the space of tempered distributions on Rn.
We define the singular support of u as

sing supp(u) = {x ∈ Rn : there does not exist an open

neighborhood V of x such that u ∈ C∞(V )}.

In addition to recording where the function is singular, we also want to
record the direction in which it is singular. This idea gives rise to the notion
of wavefront set, that we now build up to.

“Direction of singularity” is associated to lack of decay of the Fourier
transform in the same direction. For this purpose it is useful to consider sets
invariant under rescaling, i.e., cones.

Definition 3. A set X is said to be a conic neighborhood of a set Y ⊂ Rn if

• X is open;

• Y ⊂ X;

• ξ ∈ X implies λξ ∈ X for all λ > 0.

Definition 4. The singular cone of a tempered distribution u ∈ S ′(Rn) is
the set

Γ(u) = {η ∈ Rn\{0} : there does not exist a conic

neighborhood W of η such that for ξ ∈ W ,

|û(k)| ≤ CN(1 + |k|2)−N , for all N > 0.}

The intuition is that Γ(u) records the set of directions ξ in which the
Fourier transform of u decays slowly. The reason for formulating the defini-
tion in negative terms is that we want the resulting cone to be closed, i.e.,
isolated directions in which the Fourier transform would accidentally decay
quickly, while decay is otherwise slow along an open set of nearby directions,
do not count.
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The construction of Γ(u) is global – a direction is labeled singular with-
out regard to the locations x where there are singularities that may have
contributed to the direction being labeled singular. To go further we need to
localize the construction.

Lemma 2. Let φ ∈ C∞(Rn) and u ∈ S ′(Rn
0 ). Then Γ(φu) ⊂ Γ(u).

Definition 5. Let x ∈ X ⊂ Rn. We call singular fiber at x the set⋂
Γx(u) = { Γ(φu) : φ ∈ C∞0 (X), φ(x) 6= 0}.

φ

The idea of this definition is that we localize u by means of multiplica-
tion with a smooth function φ of arbitrarily small support, then consider the
smallest resulting singular cone. The definition can equivalently be formu-
lated by means of a family of smooth indicators whose support converges
toward the singleton {x} in the sense of sets:

Γx(u) = { lim Γ(φju) : φj ∈ C∞0 (X), φj(x) 6= 0, suppφj → {x} }.
j→∞

Note that Γx(u) is empty if u is smooth (C∞) at x.
The wavefront set then consists of the union of the singular cones, taken

as fibers over the singular support.

Definition 6. Let u ∈ S ′(Rn). The wavefront set of u is the set

WF (u) = {(x, ξ) ∈ Rn × (Rn\{0}) : ξ ∈ Γx(u)}.

The set Rn × (Rn\{0}) is also abbreviated as T ∗Rn\0.

Because this definition localizes the singularites of u both in position and
in direction, it is the basis for microlocal analysis.

In this context, the product Rn × Rn is the cotangent bundle of Rn, and
denoted T ∗Rn. The reason for viewing each singular cones (each fiber) as a
subset of the cotangent space at x rather than the tangent space at x will be
apparent in the sequel as we study the behavior of WF (u) under change of
variables.

Notice that the projection of WF (u) on the first Rn (relative to x) is the
singular support sing supp(u), while the projection of WF (u) on the second
Rn (relative to ξ) is the singular cone Γ(u).
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In the context of imaging, we will use the same notation as introduced
above and let ξ be the wave-vector variable, dual to position x ∈ Rn in
model space. Usually, n = 3. Data space is indexed by the base variables
(xs, xr, t) ∈ Ω × R ≡ Rnd , usually with nd = 5. We denote by (ξr, ξs, ω) the
corresponding dual variables, i.e., the independent variables of the Fourier
transform of a function of (xs, xr, t). The wavefront set of a distribution
d(xr, xs, t) in Rnd is then

WF (d) = {(xr, x , t; ξ d
s , ξ ∗ n

r s, ω) ∈ T R \0 : (ξr, ξs, ω) ∈ Γ(xr,xs,t)(d)}.

We will also consider wavefront sets of functions in the product space
Rn ×Rnd = Rn+nd of model space and data space, such as the distributional
integral kernel K of F . We have

WF (K) = {(xr, xs, t, x; ξr, ξs, ω, ξ) ∈ T ∗Rn+nd\0 : (ξr, ξs, ω, ξ) ∈ Γ(xr,xs,t,x)(K)}.
(8.1)

In a product space, a wavefront set has the additional interpretation of being
a relation. The role of WF (K), where K is the kernel of F , is that it provides
a way of predicting WF (Fm1) from WF (m1) using a simple composition
rule.

In order to see WF (K) as a relation, however, two minor modifications
need to be made to the definition (8.1). First, the variables first need to be
re-arranged as ((x, ξ), (xr, xs, t; ξr, ξs, ω)), in order to be seen as elements of
the product space T ∗Rn × T ∗Rnd . Second, the sign of the first co-variable
ξ needs to be flipped, so that we instead consider the “wavefront prime”
WF ′(K). In short,

((x,−ξ), (xr, xs, t; ξr, ξs, ω)) ∈ WF ′(k) ⇔ (xr, xs, t, x; ξr, ξs, ω, ξ) ∈ WF (K)

We call WF ′(K) the wavefront relation of the operator whose kernel is K.
More generally, the operations that define relations are as follows.

• The composition of a relation C ⊂ X × Y and a set S ⊂ X is the set

C ◦ S = {y ∈ Y : there exists x ∈ S such that (x, y) ∈ C}.

• The composition of two relations C ⊂ X × Y and C ′ ∈ Y × Z is the
relation

C ◦ C ′ = {(x, z) ∈ X × Z : there exists y ∈ Y

such that (x, y) ∈ C, (y, z) ∈ C ′}.
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• The transposition of a relation C is the relation

CT = {(y, x) ∈ Y ×X : (x, y) ∈ C}.

We call identity relation on X the set I = {(x, x) : x ∈ X}. Note that 
all our relations are “canonical” in the sense that they preserve areas in a 
generalized sense2. We will not purse this topic further here.

The high-level idea is that we would like to write WF (Fm1) ⊂ WF ′(K)◦
WF (m1), but this identity is not always true. The obstruction is that
elements of WF ′(K) are in T ∗Rn×nd\0, which is in general a larger set
than (T ∗Rn\0) × (T ∗Rnd\0). Hence the interpretation of WF ′(K) as a re-
lation runs into trouble with those elements such that either ξ = 0 but
(ξs, ξr, ω) 6= 0; or conversely (ξs, ξr, ω) = 0 but ξ 6= 0. We say such elements
are part of the zero sections of WF ′(K). In the sequel, we simply treat the
case when those zero sections are empty.

The proper way of composing wavefront sets is the following celebrated
theorem, due to Hörmander.

Theorem 5. Let K be the distributional kernel of an operator F , with wave-
front set (8.1). Assume that the elements of WF ′(K) obey

ξ = 0 ⇔ (ξs, ξr, ω) = 0,

i.e., WF ′(K) does not have zero sections. Then, for all m1 in the domain of
F ,

WF (Fm1) ⊂ WF ′(K) ◦WF (m1).

The physical significance of the zero sections will be made clear below
when we compute WF (K) for the imaging problem.

We can now consider the microlocal properties of the imaging operator
F ∗. Its kernel is simply KT , the transpose of the kernel K of F . In turn, the
relation WF ′(KT ) is simply the transpose of WF ′(K) seen as a relation in
the product space T ∗Rn × T ∗Rnd ,

WF ′(KT ) = (WF ′(K))T .

2Namely, they are Lagrangian manifolds: the second fundamental symplectic form
vanishes when restricted to canonical relations. The precaution of flipping the sign of the
first covariable ξ in the definition of WF ′(K) translates into the fact that, in variables
((x, ξ), (y, η)), it is dx∧dξ−dy∧dη that vanishes when restricted to the relation, and not
dx ∧ dξ + dy ∧ dη.
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Our interest is in whether the normal operator F ∗F preserves the sin-
gularities of the function m1 it is applied to, i.e., whether imaging “places”
singularities of the model perturbation at the right location from the knowl-
edge of the linearized data Fm1. To study the mapping of singularities of
the normal operator F ∗F , we are led to the composition

WF (F ∗Fm ) ⊂ (WF ′ T
1 (K)) ◦WF ′(K) ◦WF (m1).

up to the same precaution involving zero-sections as above. The question is
now whether the transpose relation can be considered an inverse, i.e., whether
(WF ′(K))T ◦WF ′(K) is a subset of the identity on T ∗Rn. A simple condition
of injectivity is necessary and sufficient for this to be the case.

Definition 7. We say a relation C ⊂ X × Y is injective if

(x1, y) ∈ C, (x2, y) ∈ C ⇒ x1 = x2.

As a map from X to Y , an injective relation may be multivalued, but as
a map from Y to X, the transpose relation is a graph.

Lemma 3. A relation C is injective if and only if CT ◦ C ⊂ I.

Proof. Assume that C ⊂ X×Y is injective, and let S ⊂ X. By contradiction,
if CT ◦ C were not a subset of I, then there would exist an element x of
X, for which there exists an element x′ of CT ◦ C ◦ x such that x′ 6= x. By
definition of CT ◦C, this means that there exists y ∈ Y such that (y, x′) ∈ CT

and (x, y) ∈ C. By definition of transpose relation, we have (x′, y) ∈ C.
Injectivity of C implies x = x′, a contradiction.

By contraposition, assume that C ⊂ X × Y is not injective, i.e., there
exist two elements (x, y) and (x′, y) of C for which x 6= x′. Then (y, x′) ∈ CT

by definition of transpose, and (x, x′) ∈ CT ◦C by definition of composition.
Since x 6= x′, CT ◦ C is not contained in the identity relation I = {(x, x) :
x ∈ X}.

We have all the pieces to gather the main result on preservation of sin-
gularities.

Theorem 6. Let K be the distributional kernel of an operator F , with wave-
front set (8.1). Assume that the elements of WF ′(K) obey

ξ = 0 ⇔ (ξs, ξr, ω) = 0,



8.2. CHARACTERIZATION OF THE WAVEFRONT SET 113

i.e., WF (K) does not have zero sections. Further assume that WF ′(K) is
injective as a relation in (T ∗Rn\0) × (T ∗Rnd\0). Then, for all m1 in the
domain of F ,

WF (F ∗Fm1) ⊂ WF (m1).

Proof. Notice that the zero sections of (WF ′(K))T are the same as those of
WF ′(K), hence Hörmander’s theorem can be applied twice. We get

WF (F ∗Fm1) ⊂ (WF ′(K))T ◦WF ′(K) ◦WF (m1).

Under the injectivity assumption, lemma 3 allows to conclude.

The assumptions of the theorem are tight:

• If zero sections are present, the composition law is different and adds
elements away from the diagonal, as shown in the general formulation
of Hörmander’s theorem in [?].

• If injectivity does not hold, lemma 3 shows that the composition of two
relations CT ◦ C must have non-diagonal components.

8.2 Characterization of the wavefront set

In this section we construct the wavefront relation WF ′(K) explicitly in the
simple scenario of section 7.2.

Recall that the setting of section 7.2 is one in which the background
model m0(x) is heterogeneous and smooth, and enjoys no multipathing in
the zone of interest. The source wavelet w(t) (entering the right-hand side (!)
of the wave equation) still needs to be an impulse δ(t) in order to create (!) 
propagating singularities. If instead the wavelet is essentially bandlimited, then so
will the wavefields, but there are still remnants of the microlocal theory in the
magnitude and locality of the propagating “wiggles”3.

The distributional kernel of GRT migration is then

K(x;x ′′
r, xs, t) = a(x, xr, xs)δ (t− τ(xr, x, xs)),

where τ(xr, x, xs) = τ(xr, x) + τ(x, xs) is the three-point traveltime, and a is
a smooth amplitude, except for a singularity at x = xr and x = xs.

3Microlocal theory can be expressed scale-by-scale, with wave packet decompositions
and/or the so-called FBI transform. We leave out this topic.
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The singular support of K is the same as its support as a measure, namely

sing supp(K) = {(x, xr, xs, t) : t = τ(xr, x, xs)}.

In what follows we keep in mind that, for (x, xr, xs, t) to be a candidate
base point in the wavefront relation of K, i.e., with a non-empty fiber, it is
necessary that t = τ(xr, x, xs).

To find this wavefront relation, we first localize K around some refer-
ence point (x0, xr,0, xs,0, t0) by multiplication with increasingly sharper cutoff
functions, such as

χ(‖x− x0‖) χ(‖xr − xr,0‖) χ(‖xs − xs,0‖) χ(|t− t0|),

where χ is a C∞0 function compactly supported in the ball Bε(0) for some
ε that tends to zero. To keep notations manageable in the sequel, we in-
troduce the symbol [χ ] to refer to any C∞0 function of (x, xr, xs, t) (or any
subset of those variables) with support in the ball of radius ε centered at
(x0, xr,0, xs,0, t0) (or any subset of those variables, resp.).

We then take a Fourier transform in every variable, and let

I(ξ, ξ , ξ , ω) =

ˆˆˆˆ
ei(x·ξ−xr·ξr−xs·ξs−ωt)r s K(x;xr, xs, t)[χ ]dx dxr dxs dt.

(8.2)
According to the definition in the previous section, the test of member-
ship in WF ′(K) involves the behavior of I under rescaling (ξ, ξr, ξs, ω) →
(αξ, αξr, αξs, αω) by a single number α > 0. Namely,

((x0; ξ), (xr,0, xs,0, t0; ξr, ξs, ω)) ∈/ WF ′(K)

provided there exists a sufficiently small ε > 0 (determining the support of
[χ ]) such that

I(αξ, αξr, αξs, αω) ≤ Cmα
−m for all m > 0.

Notice that the Fourier transform in (8.2) is taken with a minus sign in the
ξ variable (hence eix·ξ instead of e−ix·ξ) because WF ′(K) – the one useful for
relations – precisely differs from WF (K) by a minus sign in the ξ variable.

Before we simplify the quantity in (8.2), notice that it has a wave packet
interpretation: we may let

ϕ(x) = e−ix·ξχ(‖x− x0‖),
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ψ(x , x .t) = e−i(xr·ξr+xs·ξs+ωt)r s χ(‖xr − xr,0‖) χ(‖xs − xs,0‖) χ(|t− t0|),

and view
I(ξ, ξr, ξs, ω) = 〈ψ, Fϕ〉(xr,xs,t),

with the complex conjugate over the second argument. The quantity I(ξ, ξr, ξs, ω)
will be “large” (slow decay in α when the argument is scaled as earlier) pro-
vided the wave packet ψ in data space “matches”, both in terms of location
and oscillation content, the image of the wave packet ϕ in model space under
the forward map F .

The t integral can be handled by performing two integrations by parts,
namely
ˆ
e−iωtδ′′(t− τ(x, xr, xs))χ(‖t− t0‖) dt = e−iωτ(x,xr,xs)χ̃ω(τ(x, xr, xs)),

for some smooth function χ̃ (t) = eiωt(e−iωtω χ(|t−t0|))′′ involving a (harmless)
dependence on ω0, ω1 and ω2. After absorbing the χ̃ω(τ(x, xr, xs)) factor in
a new cutoff function of (x, xr, xs) still called [χ ], the result is

I(ξ, ξ , ξ , ω) =

ˆˆˆ
ei(x·ξ−xr·ξr−xs·ξs−ωτ(x,xr,xs))

r s a(x;xr, xs)[χ ]dx dxr dxs.

(8.3)
First, consider the case when x0 = xr,0 or x0 = xs,0. In that case, no

matter how small ε > 0, the cutoff function [χ ] never avoids the singularity of
the amplitude. As a result, the Fourier transform is expected to decay slowly
in some directions. The ampltude’s singularity is not the most interesting
from a geometrical viewpoint, so for the sake of simplicity, we just brace
for every possible (ξ, ξr, ξs, ω) to be part of the fiber relative (x0, xr,0, xs,0, t0)
where either x0 = xr,0 or x0 = xs,0. It is a good exercise to characterize these
fibers in more details; see for instance the analysis in [?].

Assume now that x0 6= xr,0 and x0 6= xs,0. There exists a sufficiently small
ε for which a(x, xr, xs) is nonsingular and smooth on the support of [χ ]. We
may therefore remove a from (8.3) by absorbing it in [χ ]:

I(ξ, ξ , ξ , ω) =

ˆˆˆ
ei(x·ξ−xr·ξr−xs·ξs−ωτ(x,xr,xs))

r s [χ ]dx dxr dxs. (8.4)

What is left is an integral that can be estimated by the stationary phase
lemma, or more precisely, the simplest version of such a result when the
phase is nonstationary: see lemma 4 in appendix C.
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The phase in (8.4) is φ(x, xr, xs) = x·ξ−xr·ξr−xs·ξs−ωτ(x, xr, xs). Notice
that φ involves the co-variables in a linear manner, hence is homogenenous
of degree 1 in α, as needed in lemma 4. Its gradients are

∇xφ = ξ − ω∇xτ(x, xr, xs),

∇xrφ = −ξr − ω∇xrτ(x, xr, xs),

∇xsφ = −ξs − ω∇xsτ(x, xr, xs).

If either of these gradients is nonzero at (x0, xr,0, xs,0), then it will also be
zero in a small neighborhood of that point, i.e., over the support of [χ ]
for ε small enough. In that case, lemma 4 applies, and it follows that
the decay of the Fourier transform is fast no matter the (nonzero) direc-
tion (ξ, ξr, ξs, ω). Hence, if either of the gradients is nonzero, the point
((x0, ξ), (x

′
r,0, xs,0, t0; ξr, ξs, ω)) is not in WF (K).

Hence ((x0, ξ), (xr,0, xs,0, t0; ξr, ξ
′

s, ω)) may be an element in WF (K) only
if the phase has a critical point at (x0, xr,0, xs,0):

ξ = ω∇xτ(x0, xr,0, xs,0), (8.5)

ξr = −ω∇xrτ(x0, xr,0, xs,0), (8.6)

ξs = −ω∇xsτ(x0, xr,0, xs,0). (8.7)

Additionally, recall that t0 = τ(x0, xr,0, xs,0). We gather the result as follows:

WF ′(K) ⊂ { ((x, ξ), (xr, xs, t; ξr, ξs, ω)) ∈ (T ∗Rn × T ∗Rnd)\0 :

t = τ(x, xr, xs), ω 6= 0, and, either x = xr, or x = xs,

or (8.5, 8.6, 8.7) hold at (x, xr, xs) }.

Whether the inclusion is a proper inclusion, or an equality, (at least away
from x = xr and x = xs) depends on whether the amplitude factor in (8.4)
vanishes in an open set or not.

Notice that ω 6= 0 for the elements in WF ′(K), otherwise (8.5, 8.6, 8.7)
would imply that the other covariables are zero as well, which is not allowed
in the definition of WF ′(K). In the sequel, we may then divide by ω at will.

The relations (8.5, 8.6, 8.7) have an important physical meaning. Re-
call that t = τ(x, xr, xs) is called isochrone curve/surface when it is consid-
ered in model x-space, and moveout curve/surface when considered in data
(xr, xs, t)-space.
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• The relation ξ = ω∇xτ(x, xr, xs) indicates that ξ is normal to the
isochrone passing through x, with level set t = τ(x, xr, xs). In terms of
two-point traveltimes, we may write

ξ
= ∇xτ(x, xr) +∇xτ(x, xs).

ω

Observe that ∇xτ(x, xr) is tangent at x to the ray from xr to x, and
∇xτ(x, xs) is tangent at x to the ray from xs to x, hence ξ is the bisector
direction for those two rays. The (co)vector ξ may be understood as
the (co)normal to a “localized mirror” about which the incident wave
reflects in a specular manner to create the scattered wave. The equation
above is then the vector expression of Snell’s law of reflection, that
the angle of incidence ∠(∇xτ(x, xs), ξ) equals the angle of reflection
∠(∇xτ(x, xr), ξ).

• The special case ξ = 0 is equally important from a physical viewpoint.
Since ω 6= 0, it corresponds to

∇xτ(x, xr) = −∇xτ(x, xs),

i.e., the tangents to the incident and reflected rays are collinear and
opposite in signs. This happens when x is a point on the direct, unbro-
ken ray linking xr to xs. We may call this situation forward scattering:
it corresponds to transmitted waves rather than reflected waves. The
reader can check that it is the only way in which a zero section is created
in the wavefront relation (see the previous section for an explanation
of zero sections and how they impede the interpretation of WF ′(K) as
a relation.)

• Consider now (8.6) and (8.7). Pick any η = (ηr, ηs), form the combi-
nation ηr· (8.6) + ηs· (8.7) = 0, and rearrange the terms to get   

ξr ηrξs · ηs  = 0,
ω ηr · ∇xrτ + ηs · ∇xsτ

with both τ evaluated at (x, xr, xs). The second vector in the dot
product is an arbitrary vector tangent to the moveout surface t =
τ(x, xr, xs) in (xr, xs, t)-data space. Thus (ξr, ξs, ω) is normal to the
moveout surface.
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We are now ready to interpret WF ′(K) in terms of the mapping of singu-
(!) larities that it generates. Assume that no forward scattering is taking place,

i.e., we are only dealing with reflected rather than transmitted waves. From a
singularity in model space at a point x and in the direction ξ – a local mirror
placed at x with conormal ξ – the wavefront relation predicts that there may
be singularities in data space, with location(s) (xr, xs, t) and corresponding
conormal direction(s) (ξr, ξs, ω) determined as follows.

Fix a couple (x, ξ).

1. For each xs, find the unique ray that links xs to x.

2. At x, find the direction of the incoming ray as ∇xτ(x, xs).

3. Determine ∇xτ(x, xr) as the vector with magnitude 1/c(x) (from the
eikonal equation), and direction so that (8.5) holds for some ω. This
can be done by computing the reflection of ∇xτ(x, xs) about the axis
generated by ξ,

∇xτ(x, xs) · ξ∇xτ(x, xr) = ∇xτ(x, xs)− 2 ξ.
ξ · ξ

4. Trace the ray from x and take-off direction −∇xτ(x, xr):

• If the ray is closed or exits the domain before reaching a receiver,
discard xs. This particular xs does not give rise to any singularity
(relative to this particular couple (x, ξ).)

• If the ray reaches a receiver xr, let t = τ(x, xs) + τ(x, xr). Some
singularity may appear at the point (xs, xr, t) in data space.

5. Determine ω = ‖ξ‖/‖∇xτ(x, xr) +∇xτ(x, xs)‖. The normalization of
ξ starts as arbitrary, and is undone by division by ω.

6. Determine ξr and ξs directly from (8.6) and (8.7). Then the covector
conormal to the singularity at (xr, xs, t) is (ξr, ξs, ω) (as well as all its
positive multiples.)

Notice that both the data variables (xr, xs, t) and the covariables (ξr, ξs, ω)
are determined uniquely from x and ξ in this situation, hence the singularity
mapping induced by the wavefront relation is one-to-one.
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If we make the additional two assumptions that the receivers surround
(!) the domain of interest (which would require us to give up the assumption

that the acquisition manifold Ω is a vector subspace), and that there is no
trapped (closed) ray , then the test in point 4 above always succeeds. In (!)
that case, the wavefront relation is onto, hence bijective, and can be inverted
by a sequence of steps with a similar geometrical content as earlier. See an
exercise at the end of this chapter.

8.3 Pseudodifferential theory

8.4 Exercises

1. Compute the wavefront set of the following functions/distributions of
two variables: (1) the indicator function H(x1) (where H is the Heav-
iside function) of the half-plane x1 > 0, (2) the indicator function of
the unit disk, (3) the indicator function of the square [−1, 1]2, (4) the
Dirac delta δ(x).

2. Find conditions on the acquisition manifold under which forward scat-
tering is the only situation in which a zero section can be created in
WF ′(K). [Hint: transversality with the rays from x to xr, and from x
to xs.]

3. Perform the geometrical construction of (WF ′(K))T for migration,
analogous to the geometrical construction of WF ′(K) for Born mod-
eling done in section 8.2. Assume: 1) τ single-valued, 2) no forward
scattering, 3) full aperture of receivers, 4) no trapped rays, and 5) the
acquisition manifold Ω is a vector subspace equal to the Cartesian prod-
uct of two copies of the same subspace of codimension 1 in R3 (one for
xr and one for xs). In other words, you may assume that both xr and
xs lie on the “surface” z = 0.

Solution. Fix (xr, xs, t) and (ξr, ξs, ω) 6= 0. We aim to determine a
unique (x, ξ) so that ((x, ξ), (xr, xs, t; ξr, ξs, ω)) ∈ WF ′(K).

Starting with (8.6), notice first that ∇xrτ(x, xr) is a partial gradient:
it is the projection to the acquisition manifold Ω at xr of the three-
dimensional gradient of τ in its second argument, say ∇yτ(x, y)|y=(xr,0),
in coordinates y = (xr, z) so that Ω is represented by z = 0. A similar
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observation holds for ∇xsτ(x, xs). Since the norm of each partial gra-
dient is less than the norm of the full gradient, and since the eikonal
equation determines this latter norm, ξr and ξs must obey the geometric
compatibility relations

ω|ξr| ≤
c(xr)

, |ξs| ≤
ω

.
c(xs)

The coordinate z is one-dimensional from our assumption on the ac-
quisition manifold, so we can now assemble the full gradient of τ at xr.
With the help of (8.6) we obtain(

ξr∇yτ(x, y)|y=(xr,0) = −
ω
,±

√
1

c2(xr)
− |ξr|

2
)
.

ω2

(The sign is determined on geometrical grounds, so that ∇yτ points 
outside the domain of interest.) Minus the direction of ∇yτ is also 
the take-off direction of a ray from xr. We obtain ∇yτ(x, y)|y=(xs,0) in 
the same fashion from (8.7), which determines the take-off direction 
of a ray from xs. These rays meet at a single point that we call x. 
We may alternatively intersect either of these rays with the isochrone 
t = τ(x, xr, xs) to obtain x; this piece of information is redundant in the 
wavefront relation4. Finally, we determine ξ = ω∇xτ(x, xr, xs).

4Only because we have assumed that the acquisition manifold has low codimension.
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