
Chapter 2

Geometrical optics

The material in this chapter is not needed for SAR or CT, but it is founda-
tional for seismic imaging.

For simplicity, in this chapter we study the variable-wave speed wave
equation ( (!)

1

c2(x)

∂2
)

−∆ u = 0.
∂t2

As explained earlier, this equation models either constant-density acoustics
(c2(x) is then the bulk modulus), or optics (cref/c(x) is then the index of
refraction for some reference level cref). It is a good exercise to generalize
the constructions of this chapter in the case of wave equations with several
physical parameters.

2.1 Traveltimes and Green’s functions

In a uniform 3D medium, we have seen that the acoustic Green’s function
(propagator) is

δ(ct− |x− y|)
G(x, y, t) = . (2.1)

4πc|x− y|

In a variable (smooth) medium c(x), we can no longer expect an explicit
formula for G. However, to good approximation, the Green’s function can
be expressed in terms of a progressing-wave expansion as

G(x, y, t) = a(x, y)δ(t− τ(x, y)) +R(x, y, t), (2.2)
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where a is some smooth amplitude function, τ is the so-called traveltime
function, and R is a remainder which is not small, but smoother than a delta
function.

The functions a and τ are determined by substituting the expression
above in the wave equation(

1

c2(x)

∂2
)

−∆x G(x, y, t) = 0, x =6 y,
∂t2

and equating terms that have the same order of smoothness. By this, we
mean that a δ(x) is smoother than a δ′(x), but less smooth than a Heaviside
step function H(x). An application of the chain rule gives(

1

c2(x)

∂2

∂t2
−∆x

)
G = a

(
1

c2(x)
− |∇xτ |2

)
δ′′(t− τ)

+ (2∇xτ · ∇xa− a∆xτ) δ′(t− τ)

+ ∆xaδ(t− τ) +

(
1

c2(x)

∂2
)

−∆x R.
∂t2

The δ′′ term vanishes if, and in the case a 6= 0, only if

1|∇xτ(x, y)| = , (2.3)
c(x)

a very important relation called the eikonal equation for τ . It determines τ
completely for x in some neighborhood of y. Notice that τ has the units of
a time.

The δ′ term vanishes if and only if

2∇xτ(x, y) · ∇xa(x, y)− a(x, y)∆xτ(x, y) = 0, (2.4)

a relation called the transport equation for a. It determines a up to a mul-
tiplicative scalar, for x in a neighborhood of y.

As for the term involving δ, it is a good exercise (see end of chapter) to
check that the multiplicative scalar for the amplitude a can be chosen so that
the solution R of (

1
∆xa(x, y)δ(t− τ(x, y)) +

c2(x)

∂2

∂t2
−∆x

)
R = δ(x− y)δ(t)
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is smoother than G itself. A good reference for progressing wave expansions
is the book “Methods of Mathematical Physics” by Courant and Hilbert (pp.
622 ff. in volume 2).

This type of expansion for solutions of the wave equation is sometimes de-
rived in the frequency domain ω rather than the time domain t. In that case,
it often takes on the name geometrical optics. Taking the Fourier transform
of (2.2), we get the corresponding Ansatz in the ω domain:

Ĝ(x, y, ω) =

ˆ
eiωtG(x, y, t) dt = a(x, y)eiωτ(x,y) + R̂(x, y, ω). (2.5)

Because τ appears in a complex exponential, it is also often called a phase.
The same exercise of determining a and τ can be done, by substituting this
expression in the Helmholtz equation, with the exact same outcome as earlier.
Instead of matching like derivatives of δ, we now match like powers of ω. The
ω2 term is zero when the eikonal equation is satisfied, the ω term is zero when
the transport equation is satisfied, etc.

Doing the matching exercise in the frequency domain shows the true
nature of the geometrical optics expression of the Green’s function: it is a
high-frequency approximation.

Let us now inspect the eikonal equation for τ and characterize its solu-
tions. In a uniform medium c(x) = c0, it is easy to check the following two
simple solutions.

• With the condition τ(y, y) = 0, the solution is the by-now familiar

|x− y|
τ(x, y) = ,

c0

which defines a forward light cone, (or − |x−y| , which defines a backward
c0

light cone,) and which helps recover the phase of the usual Green’s
function (2.1) when plugged in either (2.2) or (2.5).

• This is however not the only solution. With the condition τ(x) = 0

for x1 = 0 (and no need for a parameter y), a solution is τ(x) = |x1|
c0
.

Another one would be τ(x) = x1 .
c0

For more general boundary conditions of the form τ(x) = 0 for x on some
curve Γ, but still in a uniform medium c(x) = c0, τ(x) takes on the interpre-
tation of the distance function to the curve Γ.
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Note that the distance function to a curve may develop kinks, i.e., gradi-
ent discontinuities. For instance, if the curve is a parabola x2 = x2

1, a kink
is formed on the half-line x = 0, x 1

1 2 ≥ above the focus point. This com-
4

plication originates from the fact that, for some points x, there exist several
segments originating from x that meet the curve at a right angle. At the
kinks, the gradient is not defined and the eikonal equation does not, strictly
speaking, hold. For this reason, the eikonal equation is only locally solvable
in a neighborhood of Γ. To nevertheless consider a generalized solution with
kinks, mathematicians resort to the notion of viscosity solution, where the
equation

1
= |∇xτε|2 + ε2∆xτε

c2(x)

is solved globally, and the limit as ε → 0 is taken. Note that in the case
of nonuniform c(x), the solution generically develops kinks even in the case
when the boundary condition is τ(y, y) = 0.

In view of how the traveltime function appears in the expression of the
Green’s function, whether in time or in frequency, it is clear that the level
lines

τ(x, y) = t

for various values of t are wavefronts. For a point disturbance at y at t = 0,
the wavefront τ(x, y) = t is the surface where the wave is exactly supported
(when c(x) = c0 in odd spatial dimensions), or otherwise essentially sup-
ported (in the sense that the wavefield asymptotes there.) It is possible to
prove that the wavefield G(x, y, t) is exactly zero for τ(x, y) > t, regardless
of the smoothness of c(x), expressing the idea that waves propagate no faster
than with speed c(x).

Finally, it should be noted that

φ(x, t) = t− τ(x, y)

is for each y (or regardless of the boundary condition on τ) a solution of the
characteristic equation (

∂ξ
)2

= |∇xξ|2,
∂t

called a Hamilton-Jacobi equation, and already encountered in chapter 1.
Hence the wavefronts t− τ(x, y) = 0 are nothing but characteristic surfaces
for the wave equation. They are the space-time surfaces along which the
waves propagate, in a sense that we will make precise in section 8.1.
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2.2 Rays

We now give a general solution of the eikonal equation, albeit in a somewhat
implicit form, in terms of rays. The rays are the characteristic curves for the
eikonal equation. Since the eikonal equation was already itself characteristic
for the wave equation (see the discussion at the end of the preceding section),
the rays also go by the name bicharacteristics.

The rays are curves X(t) along which the eikonal equation is simplified, in
the sense that the total derivative of the traveltime has a simple expression.
Fix y and remove it from the notations. We write

d ˙τ(X(t)) = X(t) · ∇τ(X(t)). (2.6)
dt

This relation will simplify if we define the ray X(t) such that

• the speed |Ẋ(t)| is c(x), locally at x = X(t);

• ˙the direction of X(t) is perpendicular to the wavefronts, i.e., aligned
with ∇τ(x) locally at x = X(t).

These conditions are satisfied if we specify the velocity vector as

∇τ(X(t))
Ẋ(t) = c(X(t)) . (2.7)

|∇τ(X(t))|

Since the eikonal equation is |∇τ(x)| = 1/c(x), we can also write

Ẋ(t) = c2(X(t))∇τ(X(t)).

˙Using either expression of X(t) in (2.6), we have

d
τ(X(t)) = 1,

dt

which has for solution

τ(X(t))− τ(X(t0)) = t− t0.

We now see that τ indeed has the interpretation of time. Provided we can
solve for X(t), the formula above solves the eikonal equation.

The differential equation (2.7) for X(t) is however not expressed in closed
form, because it still depends on τ . We cannot however expect closure from
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a single equation in X(t). We need an auxiliary quantity that records the
direction of the ray, such as

ξ(t) = ∇τ(X(t)).

Then (all the functions of x are evaluated at X(t))

ξ̇(t) = ∇∇τ · Ẋ(t)

= ∇∇τ(X(t)) · c2∇τ
c2

=
2
∇|∇τ |2

=
c2

∇c−2

2
c−2

= − ∇c2

2
|∇τ |2

= −
2
∇c2

= −|ξ(t)|
2

∇(c2)(X(t)).
2

We are now in presence of a closed, stand-alone system for the rays of geo-
metrical optics in the unknowns X(t) and ξ(t):{

Ẋ(t) = c2(X(t)) ξ(t), X(0) = x0,

ξ̇(t) = −∇(c2)(X(t)) |ξ(t)|2, ξ(0) = ξ0.2

The traveltime function τ(x) is equivalently determined as the solution of
the eikonal equation (the Eulerian viewpoint), or as the time parameter for
the ray equations (the Lagrangian viewpoint). While X is a space variable,
together (X, ξ) are called phase-space variables. It is fine to speak of a
curve X(t) in space as a ray, although strictly speaking the ray is a curve
(X(t), ξ(t)) in phase-space. Because of its units, ξ is in this context often
called the slowness vector.

The system above is called Hamiltonian because it can be generated as{
Ẋ(t) = ∇ξH(X(t), ξ(t)),

ξ̇(t) = −∇xH(X(t), ξ(t)),

from the Hamiltonian
1

H(x, ξ) =
2
c2(x)|ξ|2.
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This is the proper Hamiltonian for optics or acoustics; the reader is already
p2aware that the Hamiltonian of mechanics is H(x, p) = + V (x). Note that
2m

H is a conserved quantity along the rays1

It can be shown that the rays are extremal curves of the action functional ($)

1
S( ) =

ˆ b

X
a c(x)

d` =

ˆ 1

0

1 |Ẋ(t)|dt, s.t. X(0) = a, X(1) = b,
c(X(t))

a result called the Fermat principle. For this reason, it can also be shown
that the rays are geodesics curves in the metric ($)∑

ds2 = c−2(x)dx2, dx2 = dxi ∧ dxi.
i

The traveltime τ therefore has yet another interpretation, namely that of 
action in the variational Hamiltonian theory2.

Inspection of the ray equations now gives another answer to the question
of solvability of τ from the eikonal equation. There is no ambiguity in spec-
ifying τ from |∇τ(x, y)| = 1/c(x) and τ(y, y) = 0 as long as there is a single
ray linking y to x. When there are several such rays — a situation called mul-
tipathing — the traveltime function takes on multiple values τj(x, y) which
each solve the eikonal equation locally. The function that records the “num-
ber of arrivals” from y to x has discontinuities along curves called caustics ;
the respective eikonal equations for the different branches τj hold away from
caustics. The global viscosity solution of the eikonal equation only records
the time of the first arrival.

2.3 Amplitudes

We can now return to the equation (2.4) for the amplitude, for short

2∇τ · ∇a = −a∆τ.

It is called a transport equation because it turns into an ODE in characteristic
coordinates, i.e., along the rays. Again, all the functions of x should be

1So is the symplectic 2-form dx ∧ dξ, hence areas are conserved as well.
2There is no useful notion of Lagrangian in optics, because the photon is massless.

See the book on Mathematical methods of classical mechanics by Arnold and the treatise
by Landau and Lifschitz for the fascinating analogy between the equations of optics and
Lagrangian/Hamiltonian mechanics.
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evaluated at X(t) in the following string of equalities:

d ˙a(X(t)) = X(t) · ∇a
dt

= c2∇τ · ∇a
c2

= − a ∆τ.
2

If τ is assumed known, then this equation specifies a(X(t)) up to a multi-
plicative constant. If we wish to eliminate τ like we did earlier for the rays,
then we need to express ∆τ(X(t)) not just in terms of X(t) and ξ(t), but
also in terms of the first partials ∂X

∂X0
(t), ∂X

∂ξ0
(t), ∂ξ

∂X0
(t), ∂ξ (t) with respect to

∂ξ0

the initial conditions3.
The transport equation can also be written in divergence form,

∇ · (a2∇τ) = 0,

which suggests that there exists an underlying conserved quantity, which
integration will reveal. Assume for now that space is 3-dimensional. Consider
a ray tube R, i.e, an open surface spanned by rays. Close this surface with two
cross-sections S+ and S− normal to the rays. Apply the divergence theorem
in the enclosed volume V . This gives

0 =

˚
∇ · (a2∇τ)dV =

‹
a2∇τ · ndS,

V ∂V

where n is the outward normal vector to the surface ∂V = R ∪ S+ ∪ S−.

• For x on R, the normal vector n is by definition (of R) perpendicular
to the ray at x, hence ∇τ · n = 0.

• For x on S±, the normal vector n is parallel to the ray at x, hence
∇τ · n = ±|∇τ |.

As a result, ˆ
a2|∇τ |dS =

S+

ˆ
a2|∇τ |dS,

S−

3See for instance the 2006 paper by Candes and Ying on the phase-flow method for
these equations.
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thus ˆ
a2

S+
c
dS =

ˆ
S−

a2

dS.
c

This relation is an expression of conservation of energy. Passing to an in-
finitesimally thin ray tube linking x0 to x, it becomes√

a(x) = a(x0)
c(x0)

c(x)

dS
.

dS0

It is again clear that the amplitude is determined up to a multiplicative scalar
from this equation. A similar argument can be made in 2 space dimensions,
and leads to the same conclusion with the ratio of line elements ds/ds0 in
place of the ratio of surface elements dS/dS0.

Examples of solutions in a uniform medium in R3 include

• Plane waves, for which dS/dS0 = 1 hence a = constant,

• Cylindrical waves about r = 0, for which dS/dS0 = r/r0 hence a ∼√
1/ r,

• Spherical waves about r = 0, for which dS/dS 2
0 = (r/r0) hence a ∼

1/r,

• A cylindrical focus or a caustic point at r = a can generically be seen√
as a time-reversed cylindrical wave, hence a ∼ 1/ r − a. A spherical
focus is a geometrical exception; it would correspond to a ∼ 1/(r− a).

In the infinite-frequency geometrical optics approximation, the amplitude
indeed becomes infinite at a focus point or caustic curve/surface. In reality,
the amplitude at a caustic is an increasing function of the frequency ω of
the underlying wave. The rate of growth is generically of the form ω1/6, as
established by Keller in the 1950s.

Caustics and focus points give rise to bright spots in imaging datasets,
although this information is probably never explicitly used in practice to
improve imaging.

2.4 Caustics

For fixed t, and after a slight change of notation, the Hamiltonian system
generates the so-called phase map (x, ξ) 7→ (y(x, ξ), η(x, ξ)). Its differential
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is block partitioned as ( ) (
∂y

y∇(x,ξ) =
η

∂x
∂y
∂ξ

∂η
∂x

∂η

)
.

∂ξ

Besides having determinant 1, this Jacobian matrix has the property that∑ ∂ηj
δkl =

j
∂ξl

∂yj
∂xk
− ∂ηj
∂xk

∂yj
. (2.8)

∂ξl

This equation is conservation of the second symplectic form dη∧dy = dξ∧dx
written in coordinates. It also follows from writing conservation of the first
symplectic form ξ · dx = η · dy as∑ ∂yi

ξj = ηi
i

∂xj
, 0 =

∑
i

ηi
∂yi

,
∂ξj

and further combining these expressions. (dη ∧ dy = dξ ∧ dx also follows
from ξ ·dx = η ·dy by Cartan’s formula). Equation (2.8) can also be justified
directly, see the exercise section. Note in passing that it is not a Poisson
bracket.

It is instructive to express (2.8) is ray coordinates. Without loss of gen-
erality choose the reference points x0 = 0 and ξ0 = (1, 0)T . Let x1 and ξ1 be
the coordinates of x and ξ along ξ0, and x2, ξ2 along ξ⊥0 . Consider (y0, η0) the
image of (x0, ξ0) under the phase map. Let y1 and y2 be the coordinates of y
and η along η0, and x2, ξ2 along η⊥0 . In other words, the coordinates labeled
“1” are along the ray (longitudinal), and “2” across the ray (transversal).

In two spatial dimensions, only the coordinates across the ray give rise to
a nontrivial relation in (2.8). One can check that the k = l = 2 element of
(2.8) becomes

∂η2
1 =

∂ξ2

∂y2

∂x2

− ∂η2

∂x2

∂y2
. (2.9)

∂ξ2

When either of the terms in this equation vanish, we say that (y, η) is on a
caustic. Two regimes can be contrasted:

• If ∂y2/∂x2 = 0, we are in presence of a “x-caustic”. This means that, as
the initial point x is moved infinitesimally in a direction perpendicular
to the take-off direction, the resulting location y does not move. A
x-caustic is at the tip of a swallowtail pattern formed from an initial
plane wavefront.
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• If ∂y2/∂ξ2 = 0, we are in presence of a “ξ-caustic”. This means that,
as the initial direction angle arg ξ changes infinitesimally, the resulting
location y does not move. A ξ-caustic is at the tip of a swallowtail
pattern formed from an initial point wavefront.

Equation (2.9) shows that these two scenarios cannot happen simultaneously.
In fact, if the variation of y2 with respect to x2 is zero, then the variation
of y2 with respect to ξ2 must be maximal to compensate for it; and vice-
versa. When t is the first time at which either partial derivative vanishes,
the caustic is a single point: we speak of a focus instead.

Notice that ∂η2/∂x2 = 0 and ∂η2/∂ξ2 = 0 are not necessarily caustic
events; rather, they are inflection points in the wavefronts (respectively ini-
tially plane and initially point.)

2.5 Exercises

1. (Difficult) Show that the remainder R in the progressing wave expan-
sion is smoother than the Green’s function G itself.

2. In this exercise we compute the Fréchet derivative of traveltime with
respect to the wave speed. For simplicity, let n(x) = 1/c(x).

x
(a) In one spatial dimension, we have already seen that τ(x) = n(x′)dx′.

x0
Find an expression for δτ(x)/δn(y) (or equivalently for the

´
oper-

ator that it generates via 〈δτ(x)/δn, h〉 for a test function h).

(b) In several spatial dimensions, τ(x) obeys |∇τ(x)| = n(x) with
τ(0) = 0, say. First, show that δτ(x)/δn(y) obeys a transport
equation along the rays. Then solve this equation. Provided there
is one ray between 0 and x, argue that δτ(x)/δn(y), as a function
of y, is concentrated along this ray.

(c) What do your answers become when the derivative is taken with
respect to c(x) rather than n(x)?

The function δτ(x)/δn(y) of y is often called sensitivity kernel (of τ
with respect to n). It’s a distribution, really.

3. Show that the Hamiltonian is conserved along the trajectories of a
Hamiltonian system.
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4. Show that the alternative Hamiltonian H(x, ξ) = c(x)|ξ| generates an
equivalent system of ODEs for the rays.

5. Show that the rays are circular in a linear wave velocity model, i.e.,
c(x) = z in the half-plane z > 0. Note: {z > 0} endowed with ds2 =
dx2+dz2 ob

z2
is called the Poincaré half-plane, a very important ject in

mathematics.

6. Show that the traveltime τ is convex as a function of the underlying
medium c(x), by invoking the Fermat principle.

7. Prove (2.8).

Hint. Show it holds at time zero, and use the Hamiltonian structure
to show that the time derivative of the whole expression is zero.∑

8. Let {y(x, ξ), η(x, ξ)} be the fixed-time phase map. Show that ∂ηi
i ∂ξk

∂yi
∂ξl

is symmetric.

Hint. Same hint as above. Show that the time derivative of the dif-
ference of the matrix and its transpose vanishes.

9. Let τ(x, y) be the 2-point traveltime, and let {y(x, ξ), η(x, ξ)} be the
fixed-time phase map for the Hamiltonian of isotropic optics. Prove or
disprove:

(a) ∑ ∂yk

k
∂ξj

∂τ
(x, y(x, ξ)) = 0;

∂yk

(b) ∑ ∂ηi

k
∂ξk

∂2τ ∑ ∂yk
(x, y(x, ξ)) +

∂xj∂xk
k
∂xj

∂2τ
(x, y(x, ξ)) = 0.

∂yi∂yk
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