Chapter 6

Computerized tomography

6.1 Assumptions and vocabulary

(...)

Computerized tomography (CT scans, as well as PET scans) imaging involves inversion of a Radon or X-ray transform. It is primarily used for medical imaging.

In two spatial dimensions, the variables in the Radon domain are t (offset) and θ (angle). Data in the form $d(t,\theta)$ corresponds to the *parallel beam* geometry. More often, data follow the *fan-beam* geometry, where for a given value of θ the rays intersect at a point (the source of X-rays), and t indexes rays within the fan. The transformation to go from parallel-beam to fanbeam and back is

$$d_{\text{fan}}(t,\theta) = d_{\text{para}}(t,\theta + (at+b)),$$

for some numbers a and b that depend on the acquisition geometry. Datasets in the Radon domain are in practice called *sinograms*, because the Radon transform of a Dirac mass is a sine wave¹.

6.2 The Radon transform and its inverse

Radon transform:

$$(Rf)(t,\theta) = \int \delta(t - x \cdot e_{\theta}) f(x) \, dx,$$

¹More precisely, a distribution supported on the graph of a sine wave, see an exercise at the end of the chapter.

with $e_{\theta} = (\cos \theta, \sin \theta)^T$.

Fourier transform in t / Fourier-slice theorem²:

$$\widehat{Rf}(\omega,\theta) = \int e^{-i\omega x \cdot e_{\theta}} f(x) \, dx.$$

Adjoint Radon transform / (unfiltered) backprojection:

$$R^*d(x) = \int e^{i\omega x \cdot e_{\theta}} \widehat{d}(\omega, \theta) \, d\omega d\theta$$
$$= \int \delta(t - x \cdot e_{\theta}) d(t, \theta) \, dt d\theta$$
$$= \int d(x \cdot \theta, \theta) \, d\theta$$

Inverse Radon transform / filtered backprojection in the case of two spatial dimensions:

$$R^{-1}d(x) = \frac{1}{(2\pi)^n} \int e^{i\omega x \cdot e_\theta} \widehat{d}(\omega, \theta) \,\omega \, d\omega d\theta.$$

(notice the factor ω .)

Filtered backprojection can be computed by the following sequence of steps:

- Take a Fourier transform to pass from t to ω ;
- Multiply by ω ;
- Take an inverse Fourier transform from ω back to t, call $D(t, \theta)$ the result;
- Compute $\int d(x \cdot \theta, \theta) d\theta$ by quadrature and interpolation (piecewise linear interpolation is often accurate enough.)

100

²The direct Fourier transform comes with $e^{-i\omega t}$. Here t is offset, not time, so we use the usual convention for the FT.

6.3 Exercises

- 1. Compute the Radon transform of a Dirac mass, and show that it is nonzero along a sinusoidal curve (with independent variable θ and dependent variable t, and wavelength 2π .)
- 2. In this problem set we will form an image from a fan-beam CT dataset. (Courtesy Frank Natterer)

Download the data set at http://math.mit.edu/icg/ct.mat

and load it in MATLAB[®] with load ct.mat

The array g is a sinogram. It has 513 rows, corresponding to uniformly sampled offsets t, and 360 columns, corresponding to uniform, all-around angular sampling with 1-degree steps in θ . The acquisition is fan-beam: a transformation is needed to recover the parallel-beam geometry. The fan-beam geometry manifests itself in that the angle depends on the offset t in a linear fashion. Instead of being just θ , it is $(1 \le t \le 513$ is the row index)

$$\theta + \frac{t - 257}{256}\alpha,$$

with

$$\sin \alpha = \frac{1}{2.87}.$$

Imaging from a parallel-beam sinogram is done by filtered backprojection. Filtering is multiplication by ω in the ω domain dual to the offset t. Backprojection of a sinogram $g(t, \theta)$ is

$$I(x) = \sum_{\theta} g(x \cdot \mathbf{e}_{\theta}, \theta),$$

where \mathbf{e}_{θ} is $(\cos \theta, \sin \theta)^T$. Form the image on a grid which has at least 100 by 100 grid points (preferably 200 by 200). You will need an interpolation routine since $x \cdot \mathbf{e}_{\theta}$ may not be an integer; piecewise linear interpolation is accurate enough (interp1 in MATLAB).

In your writeup, show your best image, your code, and write no more than one page to explain your choices. 102

18.325 Topics in Applied Mathematics: Waves and Imaging Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.