18.335 Midterm, Fall 2013

Each problem has equal weight. You have 1 hour and 55 minutes.

Problem 1: GMRES (20 points)

From class, the GMRES algorithm iteratively builds up an orthonormal basis Q_{n} for the Krylov space $\mathscr{K}_{n}=$ $\operatorname{span}\left\langle b, A b, \ldots, A^{n-1} b\right\rangle$ and then uses this basis to solve $\min _{x \in \mathscr{K}_{n}}\|A x-b\|_{2}$.
(a) We normally assume that each iteration n gives us a linearly independent vector, i.e. that $A^{n} b$ is not in \mathscr{K}_{n}. What happens if this is false, i.e. $A^{n} b \in \mathscr{K}_{n}$ ("breakdown")? Show that in the (unlikely) event that this occurs, it is a good thing, not a bad thing, for solving $A x=b$.
(b) Given an $m \times m A$ (which you can assume to be diagonalizable), how would you (theoretically) construct a b such that breakdown occurs after $n<m$ steps (in exact arithmetic)?

For reference, the GMRES algorithm is listed below.

```
\(q_{1}=b /\|b\|_{2}\)
for \(n=1,2, \ldots\)
    \(v=A q_{n}\)
    for \(j=1,2, \ldots, n\)
        \(h_{j n}=q_{j}^{*} v\)
        \(v=v-h_{j n} q_{j}\)
    \(h_{n+1, n}=\|v\|_{2}\)
    \(q_{n+1}=v / h_{n+1, n}\)
    solve \(\min _{x \in \mathscr{K}_{n}}\|A x-b\|_{2} \Longrightarrow \min _{y \in \mathbb{C}^{n}} \tilde{H}_{n} y-e_{1}\|b\|_{2}{ }_{2} \Longrightarrow x_{n+1}=Q_{n} y\)
```


Problem 2: Conditioning (20 points)

The following parts can be solved independently.
(a) Suppose that A is an $m \times n$ matrix (of rank $n<m$). In some applications, only certain elements $C_{i j}$ of $C=\left(A^{*} A\right)^{-1}$ are required. If you are given a few desired i and j, outline an efficient, well-conditioned algorithm to compute those $C_{i j}$. (You can use as subroutines any of the algorithms described in class...you need not reproduce their details here.)
(b) Compare the condition numbers of $f(x)=A x$ and $f(A)=A x$ (for $A \in \mathbb{C}^{m \times n}$ and $x \in \mathbb{C}^{n}$), using the L_{2} norm (and an L_{2} induced norm for matrices).

- Recall that, for a differentiable function $g(z)$ mapping $z \in \mathbb{C}^{p}$ to $g(z) \in \mathbb{C}^{q}$, the condition number is $\kappa(z)=\frac{\|J\|}{\|g(z)\| /\|z\|}$ where $\|J\|$ is the induced norm $\left(\sup _{z \neq 0} \frac{\|J z\|}{\|z\|}\right)$ of the Jacobian matrix $J_{i j}=\frac{\partial g_{i}}{\partial z_{j}}$.

Problem 3: QR updating (20 points).

Suppose you are given the QR factorization $A=Q R$ of an $m \times n$ matrix A (rank $n<m$). Describe an efficient $O\left(m^{2}+n^{2}\right)=O\left(m^{2}\right)$ algorithm to compute the QR factorization of a rank-1 update to A, that is to factorize $A+u v^{*}=Q^{\prime} R^{\prime}$ for some vectors $u \in \mathbb{C}^{m}$ and $v \in \mathbb{C}^{n}$, following these steps:
(a) Show that $Q^{\prime} R^{\prime}=Q\left(R+z v^{*}\right)$ for some z that can be computed in $O\left(m^{2}\right)$ operations. Therefore, we just need to find a unitary matrix that (acting on the left) re-triangularizes $R+z v^{*}$ to get R^{\prime} (and Q^{\prime}, which may be stored implicitly in terms of a sequence of rotations).
(b) Every column of $z v^{*}$ is proportional to the same vector z. Using this fact, explain how we can apply Givens rotations (from the bottom row to the top) which rotate z into a multiple of e_{1}, in order to convert $R+z v^{*}$ into upper-Hessenberg form using $O\left(n^{2}\right)$ operations. Recall from homework that a Givens rotation is a 2×2 unitary matrix that rotates $\binom{a}{b} \rightarrow\binom{\#}{0}$.
(c) From the upper-Hessenberg form in the previous part, explain how we can unitarily convert back to upper-triangular form in $O\left(n^{2}\right)$ operations.

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

