18.335 Midterm Solutions, Fall 2013

Problem 1: GMRES (20 points)

(a) We assume A is nonsingular, in which case $A^{n} b \neq 0$ (except in the trivial case $b=0$, for which we already have an exact solution $x=0$ to $A x=b$). Now, we are told to suppose $A^{n} b \in \mathscr{K}_{n} \Longrightarrow A^{n} b=$ $\sum_{k<n} c_{k} A^{k} b$ for some coefficients c_{k}. Let c_{ℓ} denote the first nonzero coefficient (i.e. $c_{\ell} \neq 0$ and $c_{k}=0$ for $k<\ell$; in most cases $\ell=0$). Then $A^{n} b=\sum_{k=\ell}^{n-1} c_{k} A^{k} b$ implies that we can solve for the $A^{\ell} b$ term as:

$$
A^{\ell} b=\frac{1}{c_{\ell}}\left(A^{n} b-\sum_{\ell<k<n} c_{k} A^{k} b\right) \Longrightarrow b=A\left[\frac{1}{c_{\ell}}\left(A^{n-\ell-1} b-\sum_{\ell<k<n} c_{k} A^{k-\ell-1} b\right)\right] .
$$

But we are solving $b=A x$, and by inspection

$$
x=\frac{1}{c_{\ell}}\left(A^{n-\ell-1} b-\sum_{\ell<k<n} c_{k} A^{k-\ell-1} b\right) \in \mathscr{K}_{n}
$$

since $0 \leq k-\ell-1<n$ (since $\ell<k<n$) and $0 \leq n-\ell-1<n$ (since $0 \leq \ell<n$). But if the exact solution $x \in \mathscr{K}_{n}$, then we can obtain the exact solution from Q_{n} and we don't need to compute q_{n+1}. We are done, so breakdown is a good thing.
(b) Suppose b is a linear combination of n of the eigenvectors of A. Then $A^{k} b$ will still be a linear combination of those eigenvectors for all k, and hence the Krylov space can never have dimension $>n$. So, we must break down on the n-th step, when breakdown must occur if we try to compute q_{n+1}.

Technically, we must find n eigenvectors with distinct eigenvalues in order for $A^{k} b$ to be linearly independent for $k<n$, i.e. for it to break down in exactly n steps.

Problem 2: Conditioning (20 points)

The following parts can be solved independently.
(a) We want to avoid squareing the condition number of A. So, we compute the reduced QR factorization $A=\hat{Q} \hat{R}$ (Householder is the most efficient stable way), in which case $A^{*} A=\hat{R}^{*} \hat{R}$. Since A is full-rank, \hat{R} is a nonsingular $n \times n$ matrix. Hence $C=\left(\hat{R}^{-1}\right)^{*} \hat{R}^{-1}$, and $C_{i j}=e_{i}^{*} C e_{j}=\left(\hat{R}^{-1} e_{i}\right)^{*}\left(\hat{R}^{-1} e_{j}\right)$. Since \hat{R} is upper-triangular, we can compute $x_{i}=\hat{R}^{-1} e_{i}$ efficiently by solving $\hat{R} x_{i}=e_{i}$ via backsubstitution.
(b) From class, the condition number of $f(x)=A x$ is simply $\kappa(x)=\|A\|_{2}\|x\|_{2} /\|A x\|_{2}$, since the Jacobian is A. (I told you to use $\|A\|_{F}$ for the norm of A, but that really applies when you have a choice of norms, i.e. in the second part; in the condition-number formula you must use the induced norm of the Jacobian matrix. However, the question was a bit confusing here.)

To get the condition number of $f(A)=A x$, we first need to to get the Jacobian. Let'a define the input A as a " 1 d " vector a of length $m n$:

$$
a=\left(\begin{array}{c}
\left(A_{1,:}\right)^{T} \\
\left(A_{2,:}\right)^{T} \\
\vdots \\
\left(A_{m,:}\right)^{T}
\end{array}\right),
$$

i.e. a consists of the rows of A (transposed to column vectors), one after the other, in sequence. (i.e., row-major storage of A.) There are m outputs f_{i} of $A x$, each one of which dots one row of A with x.

Hence, in terms of a, the $m \times(m n)$ Jacobian matrix looks like

$$
J=\left(\begin{array}{llll}
x^{T} & & & \\
& x^{T} & & \\
& & \ddots & \\
& & & x^{T}
\end{array}\right)
$$

Since this is block-diagonal, it is easy to figure out $\sup _{z \neq 0} \frac{\|J z\|}{\|z\|}$. Let's write z as

$$
z=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)
$$

in terms of vectors $x_{k} \in \mathbb{C}^{n}$. Note that, under the Frobenius norm, $\|A\|_{F}=\|z\|_{2}$. Then

$$
\|J\|_{2}=\frac{\|J z\|_{2}}{\|z\|_{2}}=\sqrt{\frac{\left|x^{T} x_{1}\right|^{2}+\left|x^{T} x_{2}\right|^{2}+\cdots+\left|x^{T} x_{m}\right|^{2}}{x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+\cdots+x_{m}^{*} x_{m}}}
$$

which is clearly maximized when $x_{k}=\alpha_{k} \bar{x}$ (to maximize the dot products $x^{T} x_{k} \rightarrow\left|\alpha_{k}\right|^{2}\|x\|_{2}^{2}$ over all vectors x_{k} of a given length) for some scalar $\alpha_{k} \in \mathbb{C}$, giving $\|J\|_{2}=\|x\|_{2} \sqrt{\frac{\sum\left|\alpha_{k}\right|^{2}}{\sum\left|\alpha_{k}\right|^{2}}}=\|x\|_{2}$. Hence, the condition number is $\kappa(A)=\frac{\|J\|}{\|A x\| /\|A\|}=\frac{\|x\|_{2}\|A\|_{F}}{\|A x\|_{2}}$, which is almost exactly the same the condition number for $f(x)=A x$ above, except that we substitute $\|A\|_{F}$ for $\|A\|_{2}$. Due to the equivalence of norms, however, this means that the condition numbers differ only by at most a constant factor independent of A or x.
(I asked you to use the Frobenius norm largely because it made it eaasier to compute the induced norm $\|J\|_{2}$ in the second part. Otherwise you would have had to convert z back to a matrix and used the induced L_{2} norm of that matrix for $\|z\|$ in the denominator of the $\|J\|_{2}$ formula. It's possible to work this out, but it seemed like an unnecessary amout of complexity to get something that differs only by a constant factor. The usual principle here is that, because of the equivalence of norms, we pick whatever norm is most convenient when we are discussing conditioning.)

Problem 3: QR updating (20 points).

Suppose you are given the QR factorization $A=Q R$ of an $m \times n$ matrix A (rank $n<m$). Describe an efficient $O\left(m^{2}+n^{2}\right)=O\left(m^{2}\right)$ algorithm to compute the QR factorization of a rank-1 update to A, that is to factorize $A+u v^{*}=Q^{\prime} R^{\prime}$ for some vectors $u \in \mathbb{C}^{m}$ and $v \in \mathbb{C}^{n}$, following these steps:
(a) (Note that this applies to the full QR factorization, where Q is an $m \times m$ unitary matrix, not to the reduced QR factorization with an $m \times n \hat{Q}!$) $Q^{\prime} R^{\prime}=A+u v^{*}=Q R+u v^{*}=Q\left(R+z v^{*}\right)$ implies that $Q z=u$ or $z=Q^{*} u$. Multiplying an $m \times m$ matrix Q^{*} by the vector $u \operatorname{costs} \Theta\left(m^{2}\right)$ operations.
(b) The $R+z v^{*}$ matrix looks like this:

$$
R+z v^{*}=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times \\
& & & & \times \\
& & & & \\
& & & & \\
& & & &
\end{array}\right)+\left(\begin{array}{cccc}
z \overline{v_{1}} & z \overline{v_{2}} & \cdots & z \overline{v_{n}}
\end{array}\right) .
$$

This means that, below the diagonal of R, the entries in every column are multiples of the same vector z. So, if we perform Givens rotations from the bottom up to introduce zeros into the first column, this rotation will also introduce zeros in all the columns until the diagonal is reached.

More specifically, you were asked to apply the Givens rotations that rotate z into a multiple of e_{1}, from the bottom up. As explained above, this will introduce zeros into each column of $R+z v^{*}$ until the diagonal is reached. In column k, this means it will introduce zeros until you get to the point of rotating rows k and $k+1$. Because the (k, k) entry contains $R_{k, k}$, the Givens rotation designed for z will no longer work, and will leave both of these rows nonzero (and similarly for rows $<k$). Hence, the resulting matrix is upper Hessenberg as desired (one nonzero below each diagonal).

There is $\Theta(m)$ work required to rotate z via $m-1$ Givens rotations, and $\Theta\left(n^{2}\right)$ work required to apply these rotations to $R+z v^{*}$ starting from the diagonal rows. And hence $\Theta\left(m+n^{2}\right)$ work overall; I don't mind if you ignore the $\Theta(m)$ term since it is negligible compared to the $\Theta\left(m^{2}\right)$ term from part (a). (Naively, these Givens rotations to introduce zeros into the first column will require $\Theta(m n)$ work because of the cost of applying them to the other columns, but you don't actually have to perform the rotations of the other columns for rows $>n$ since we know a priori that this will just introduce zeros.)
(c) Given upper-Hessenberg form, we just need to apply one Givens rotation to each column (to rows k and $k+1$ for column k) to restore tridiagonal form. There are n columns, and on average $\Theta(n)$ work per rotation (since the rotation has to apply to all the columns $\geq k$), for $\Theta\left(n^{2}\right)$ work overall.
(You solved a very similar problem for homework, in the context of the upper-Hessenberg GMRES least-squares problem.)

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

