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1 Overview 

Numerical methods can be distinguished from other branches of analysis and computer science 
by three characteristics: 

• They work with arbitrary real numbers (and vector spaces/extensions thereof): the desired 
results are not restricted to integers or exact rationals (although in practice we only ever 
compute rational approximations of irrational results). 

• Like in computer science (= math + time = math + money), we are concerned not only 
with existence and correctness of the solutions (as in analysis), but with the time (and other 
computational resources, e.g. memory) required to compute the result. 

• We are also concerned with accuracy of the results, because in practice we only ever have 
approximate answers: 

– Some algorithms may be intrinsically approximate—like the Newton’s-method example 
shown below, they converge towards the desired result but never reach it in a finite number 
of steps. How fast they converge is a key question. 

– Arithmetic with real numbers is approximate on a computer, because we approximate the 
set R of real numbers by the set F of floating-point numbers, and the result of every 
elementary operation (+,−,×,÷) is rounded to the nearest element of F. We need to 
understand F and how accumulation of these rounding errors a˙ects di˙erent algorithms. 

2 Square roots 

A classic algorithm that illustrates many of these concerns is “Newton’s” method to compute square √ 
2 roots x = a for a > 0, i.e. to solve x = a. The algorithm starts with some guess x1 > 0 and 

computes the sequence of improved guesses � � 
1 a 

xn+1 = xn + . 
2 xn 

√ √ 
The intuition is very simple: if xn is too big (>√ a), then a/xn will be too small (< a), and 
so their arithmetic mean xn+1 will be closer to a. It turns out that this algorithm is very old, 
dating at least to the ancient Babylonians circa 1000 BCE.1 In modern times, this was seen to 

1See e.g. Boyer, A History of Mathematics, ch. 3; the Babylonians used base 60 and a famous tablet (YBC 7289) √ 
shows 2 to about six decimal digits. 
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be equivalent to Newton’s method to find a root of f(x) = x2 − a. Recall that Newton’s method 
finds an approximate root of f(x) = 0 from a guess xn by approximating f(x) as its tangent line 
f(xn) + f 0(xn) (x − xn), leading to an improved guess xn+1 from the root of the tangent: 

f(xn) 
xn+1 = xn − , 

f 0(xn) 

and for f(x) = x2 − a this yields the Babylonian formula above. 

2.1 Convergence proof 
A classic analysis text (Rudin, Principles of Mathematical Analysis) approaches the proof of con-
vergence of this algorithm as follows: we prove that the sequence converges monotonically and is √ 
bounded, and hence it has a limit; we then easily see that the limit is a. In particular: 

√ √ 
1. Suppose xn > a, then it follows a < xn+1 < xn: 

2 
1 a−x n (a) xn+1 − xn = ( a − xn) = < 0. 2 xn 2xn 

2 
2 1 2 a 2 1 2 a 2 1 a )2

(x n −a)2 

(b) x = (x + 2a + ) − a = (x − 2a + 2 ) = (xn − = > 0 2 2 n+1 − a 4 n x n√ 4 n x n 4 xn 4x n 

(regardless of whether xn > a). 

2. A monotonic-decreasing sequence that is bounded below converges (Rudin theorem 3.14). If √ √ 
x1 < a, the second property above√ means that x2 > a; then for n > 2 it is monotonically 
decreasing and bounded below by a. 

1 2 3. The limit x = limn→∞ xn satisfies x = (x + a ), which is easily solved to show that x = a. 2 x 

However, this proof by itself tells us nothing about how fast the sequence converges 

2.2 Convergence example 

Using the accompanying Julia notebook, we will apply this method to compute the most famous √ √ 
root of all, 2. (Supposedly, the Greek who discovered that 2 is irrational was thrown o˙ a cli˙ 
by his Pythagorean colleagues.). As a starting guess, we will use x1 = 1, producing the following 
sequence when computed with about 60 digits of accuracy, where the correct digits are shown in 
boldface: 

1 
1.5 
1.4166666666666666666666666666666666666666666666666666666666675 
1.4142156862745098039215686274509803921568627450980392156862745 
1.4142135623746899106262955788901349101165596221157440445849057 
1.4142135623730950488016896235025302436149819257761974284982890 
1.4142135623730950488016887242096980785696718753772340015610125 
1.4142135623730950488016887242096980785696718753769480731766796 

Looking carefully, we see that the number of accurate digits approximately doubles on each 
iteration. This fantastic convergence rate means that we only need seven Newton iterations to 
obtain more than 60 accurate digits—the accuracy is quickly limited only by the precision of our 
floating-point numbers, a topic we will discuss in more detail later on. 

2 



2.3 Convergence rate 

Let us analyze the convergence rate quantitatively—given a small error δn on the n-th iteration, we 
will determine how much smaller the error δn+1 is in the next iteration. √ 

In particular, let us define xn = x (1 + δn), where x = a is the exact solution. This corresponds 
to defining |δn| as the relative error: 

|xn − x| |δn| = , 
|x| 

also called the fractional error (the error as a fraction of the exact value). Relative error is typically 
the most useful way to quantify the error because it is a dimensionless quantity (independent of the 
units or overal scalling of x). The logarithm (− log10 δn) of the relative error is roughly the number 
of accurate significant digits in the answer xn. 

We can plug this definition of xn (and xn+1) in terms of δn (and δn+1) into our Newton iteration 
formula to solve for the iteration of δn, using the fact that a/x = x to divide both sides by x: � � 

1 1 1 � � 
1 + δn+1 = 1 + δn + = 1 + δn + 1 − δn + δ2 + O(δ3 ) , n n 2 1 + δn 2 

where we have Taylor-expanded (1−δn)
−1 . The O(δ3 ) means roughly “terms of order δ3 or smaller;” n n 

we will define it more precisely later on. Because the sequence converges, we are entitled to assume 
that |δn|3 � 1 for suÿciently large n, and so the δ3 and higher-order terms are eventually negligible n 
compared to δ2 . We obtain: n 

δ2 
n δn+1 = + O(δ3 ), n 2 

which means the error roughly squares (and halves) on each iteration once we are close to the 
solution. Squaring the relative error corresponds precisely to doubling the number of significant 
digits, and hence explains the phenomenon above. This is known as quadratic convergence (not 
to be confused with “second-order” convergence, which unfortunately refers to an entirely di˙erent 
concept). 
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