
18.335 Midterm Solutions, Fall 2011 

Problem 1: (10+15 points) 
(a) After many iterations of the power method, the λ1 and λ2 terms will dominate: 

x ≈ c1v1 + c2v2 

for some c1and c2. However, this is not an eigenvector. Multiplying this by A gives λ1c1v1 +λ2c2v2 = � � 
λ2 λ1 c1v1 + c2v2 , which is not a multiple of x and hence will be a different vector after normalizing, 
λ1 

meaning that it does not converge to any fixed vector. 

(b) The key point is that if we look at the vectors x ≈ c1v1 + c2v2 and y ≈ λ1c1v1 + λ2c2v2 from two 
subsequent iterations, then after many iterations these are linearly independent vectors that span 
the two desired eigenvectors. We can then employ e.g. a Rayleigh–Ritz procedure to find v1 and v2: 
use Gram–Schmidt to find an orthonormal basis q1 = x/kxk2 and q2 = (y− q1q ∗ 1y)/k· · ·k2, form the 
matrix Q = (q1,q2) and find the 2× 2 matrix A2 = Q∗AQ. The eigenvalues of A2 (the Ritz values) will 
then converge to the eigenvalues λ1 and λ2 and we obtain v1 and v2 (or some multiple thereof) from 
the corresponding Ritz vectors. The key point is that AQ is in the span of q1 and q2 (in the limit of 
many iterations so that other eigenvectors disappear), so the Ritz vectors are eigenvectors. 

Of course, since we don’t know λ3 then we don’t know how many iterations to run, but we can do the 
obvious convergence tests: every few iterations, find the Ritz values from the last two iterations, and 
stop when these Ritz values stop changing to our desired accuracy. 

Alternatively, if we form the matrix X = (x,y) from the vectors of two subsequent iterations, then we 
know that (after many iterations) the columns of AX are in C(X) = spanhx,yi. Therefore, the problem 
AX = XS, where S is a 2 × 2 matrix, has an exact solution S. If we then diagonalize S = ZΛZ−1 and 
multiply both sizes by Z, we obtain AXZ = XZΛ, and hence the columns of XZ are eigenvectors of A 
and the eigenvalues diagΛ of S are the eigenvalues λ1 and λ2 of A. However, this is computationally 
equivalent to the Rayleigh–Ritz procedure above, since to solve AX = XS for S we would first do a QR 
factorization X = QR, and then solve the normal equations X∗XS = X∗AX via RS = Q∗AQR = A2R. 
Thus, S = R−1A2R: the S and A2 eigenproblems are similar; in exact arithmetic, the two approaches 
will give exactly the same eigenvalues and exactly the same Ritz vectors. 

[As yet another alternative, we could write AXZ = XZΛ as above, and then turn it into (X∗AX)Z = 
(X∗X)ZΛ, which is a 2 × 2 generalized eigenvalue problem, or (X∗X)−1(X∗AX)Z = ZΛ, which is an 
ordinary 2 × 2 eigenproblem.] 

Problem 2: (25 points) 
The obvious, but wrong thing to do here is to now minimize kb−Axk2 for x ∈ Kn where Kn = spanhx0,Ax0, . . . ,An−1x0i. 
This looks superficially like a good approach, because x0 ∈ Kn and hence the solutions x will be at least 
as good as x0. The problem is that the least-square problem that you end up solving that way is rather 
inconvenient. Suppose that we again build up a basis Qn for Kn by Arnoldi, starting with q̃1 = x0/kx0k2. 
In that case, we can write x = Qny as before and minimize kAQny − bk2 = kQn+1H̃ny − bk2. In the origi-
nal GMRES, our next step was to write b in the Qn+1 basis and then factor out the Qn+1 to obtain a small 
(n + 1) × n least-squared problem. Now, however b ∈/ Kn+1 in general (unless the exact solution is in the 
Krylov space!), so we cannot do this, and we are left with a huge m×n least-squares problem. We don’t want 
to solve this numerically, as that would be quite expensive! [In principle, it might not be prohibitive—the 
cost would be θ (mn2), proportional to the cost of n Arnoldi steps, but we can do much better.] 

Instead, the key is to minimize kb − A(x0 + d)k2 over the change d (in some Krylov space) compared 
to x0. Which Krylov space? kb−A (x0 + d)k2 = kr0 −Adk2 where r0 is the initial residual r0 = b−Ax0, and 
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from above we need r0 to be ∈ K˜ n to simplify our least-squares problem, so we want K˜ n = spanhr0,Ar0, . . . ,An−1r0i . 

That is, we start our Arnoldi process with to build up our orthonormal basis Qn for our new q̃1 = r0/kr0k2 

K˜ n, and then write d = Qny. Now, since r0 = Qn+1r0e1 where r0 = kr0k, we obtain a small least-squares 

problem minkH̃ny − r0e1k2 that we can solve for y and hence obtain solutions x = x0 + Qny . Since these 
y 

again contain x0, they clearly must be improvements on the solution when we minimize the residual over all 
y. 

Problem 3: (15+10 points) 
(a) Solutions: h i h i 

kBxk kxk (i) Consider κ(B) = maxx6=0 · maxx6=0 . Since B is the first p columns of A, for any kxk kBxk ⎛ ⎞ 
x ⎜ ⎟ 0 x we can write Bx = Ax0 where x0 = ⎝ ⎠ just has extra zero components to multiply the 
. . . 

columns > p of A by zero. Note that kxk = kx0k in the L2 norm that we usually use for κ (and 
for that matter would be true in most typical norms). Hence 

kBxk kAx0k kAxk 
max = max ≤ max 
x=6 0 kxk x=6 0 kx0k x6=0 kxk 

kxk since the vectors x0 are a subset of all vectors in Cn . Similarly for . Therefore κ(B) ≤ κ(A) kBxk 
as desired. 

(ii) In a data-fitting problem, adding columns to the matrix corresponds to increasing the number 
of degrees of freedom, which in this case means increasing the degree of the polynomial. 
Hence, increasing the degree of the polynomial increases the sensitivity of the fit coefficients 
to experimental errors (recall that condition numbers bound the ratio of relative errors in the 
output to relative errors in the input). 

(b) If κ(A) is finite then A has full column rank. Write the reduced SVD A = Û Σ̂V̂ ∗ where Û is m × n, Σ̂ 
is the n × n diagonal matrix of the n singular values, and V̂ is n × n. κ(A) = 1 implies σmin = σmax, 
which means that all the singular values are equal to some value σ and Σ̂ = σ I is a multiple of the 
n × n identity matrix. Hence A = σÛV̂ ∗ = σQ where Q = ÛV̂ ∗ satisfies Q∗Q = V̂�Û ∗�ÛV̂ ∗ = V̂V̂ ∗ = I 

(noting that V̂ is square hence unitary). Therefore A = cQ with c = σ and Q = ÛV̂ ∗ . 

Problem 4: (8+8+9 points) 
2 (a) The problem is that large x or large y (magnitude & 10154) can cause x or y2 to overflow and give p 

∞, even though the result x2 + y2 should be in a representable range. This fix is simple: let z = 
max(|x|, |y|) (which can be computed without multiplications or danger of overflow), and write p q p 

x2 + y2 = z (x/z)2 +(y/z)2 ≈ z ⊗ (x z) ⊗ (x z) ⊕ (y z) ⊗ (y z). 

Since we are now multiplying rescaled numbers with magnitudes ≤ 1, there is no danger of overflow 
and we can expect an accurate result for all representable numbers. 

(b) The problem with x = −b ±
√ 

b2 − 1 is that for very large b, if b2 > 1/εmachine then b2 1 will give 
√̂  b2, and one of the two roots will have extremely large relative error. Say b > 0, then −b + b2 − 1 ≈ √ 

−b ⊕ b ⊗ b will be all roundoff errors. 
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One way to fix this is to check for the case of large |b| and to Taylor-expand the second root in that case.q √ 1 2 1 + z = 1 + 2 z − 18 z + O(z3), so the problematic root can be approximated by −b + b 1− b 
1
2 = � � 

1 1 1 −b + b 1− 2b2 − 8b4 + O(b−6) ≈ − 2
1 
b − 8b3 . This will give us a much more accurate answer. 

The next-order term in the Taylor expansion would be −bz3/16 = −1/16b5, or a relative error 
1/16b5 1 ≈ = 8b4 , which is less that εmachine in double precision for |b| & 5000. So, we can use 1/2b 

the two-term Taylor expansion to get extremely accurate answers as soon as |b| > 5000, and use the 
exact expression otherwise. 

Another, even nicer solution, is to use the fact that the product of the two roots is 1, so we can in-√ √ 1 stead write the two roots (for b > 0) as −b − b2 − 1 and √ (switching to −b + · · · for 
−b− b2−1 

b < 0), which are exact expressions that suffer no cancellation problems for large |b|. 

A separate but less dramatic problem occurs for b = ±1 + δ where |δ | is very small (as can be 
seen by taking the derivative with b, the condition numbers of both roots diverge as δ → 0). Suppose 

Then b ⊗ b 1 ≈ 2δ + ε4 + O(ε2 |δ | ∼ εmachine and b = 1 + δ . machine) where |ε4| ≤ 4εmachine 
(where the 4 comes from combining the various ε factors for different operations in b2 − 1). Then √ √ 

2δ + ε4 + ε + O(ε2 −b+ b2 − 1 is computed as −1− δ + machine) where |ε| ≤ 4εmachine, and the 
√ √ 

error (both absolute and relative) is 2δ + ε4 − 2δ + O(εmachine) = O( 
√

εmachine). So, although 
the error is not large in absolute terms, it converges more slowly than would be required by the strict 
stability criteria. Essentially, once the user computes 1+η we are sunk since we have thrown out most 
or all of the digits of η for small |η |. The only way to fix this is to have the user specify something likep 
η = b − 1 instead of b, in which case we can compute 1 + η ± 2η + η2 with O(εmachine) errors 
even for very small |η |. However, the large-|b| failure is much more dramatic and problematic. 

(c) The problem is that for small |x|, cosx ≈ 1 and so 1 − cosx will suffer a large cancellation error. 
One approach is to check whether |x| is small and to switch to a Taylor expansion in this case, as 
in the previous problem, and that is a perfectly valid solution. Another, somewhat more elegant ap-
proach, is to use the trigonometric identity 1 − cosx = 2sin2(x/2), which involves no subtractive 
cancellation and will give us nearly machine precision for a wide range of x. [There are various 

2 other trig identities you could use instead, e.g. 1 − cos x = sin2 x = (1 − cosx)(1 + cosx) and hence 
1 − cosx = sin2 x/(1 + cosx), which is accurate for small |x|, but this is more expensive than the half-
angle formula.] 

(Note that there is a very different problem for very large x. For very large x, evaluating cosx re-
quires the computation of the remainder after dividing x by π . So, for example, if x = 10100 then one 
would need to compute x/π to ∼ 115 decimal digits in order to evaluate cosx to machine precision. 
[There is a famous story in which Paul Olum stumped Richard Feynman by posing a similar question.] 
Because of this, in in practice numerical libraries only compute sin and cos accurately if you give them 
angles not too much bigger than π .) 

3 



  
 

  
  

            

MIT OpenCourseWare 
https://ocw.mit.edu 

18.335J Introduction to Numerical Methods 
Spring 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page




