
18.335 Midterm, Spring 2015 

Problem 1: (10+(10+10) points) 
(a) Suppose you have a forwards-stable algorithm 

f̃  to compute f (x) ∈ R for x ∈ R, i.e. k f̃ (x) − 
Suppose f is bounded f (x)k = k f kO(εmach). 

below and analytic (has a convergent Taylor se-
ries) everywhere; suppose it has some global 
minimum fmin > 0 at xmin. Suppose that we 
compute xmin in floating-point arithmetic by ex-
haustive search: we just evaluate f̃  for all x ∈ F 
and return the x where f̃  is smallest. Is this pro-
cedure stable or unstable? Why? (Hint: look at 
a Taylor series of f .) 

(b) Consider the function f (x) = Ax where A ∈ 
Cm×n is an m × n matrix. 

(i) In class, we proved that naive summation 
(by the obvious in-order loop) is stable, 
and in the book it was similarly proved 
that the function g(x) = bT x (dot products 
of x with b̄) is backwards stable for x ∈ Cn 

when computed in the obvious loop g̃ [that 
is: for each x there exists an x̃ such that 
g̃(x) = g(x̃) and k ̃x −xk = kxkO(εmach)]. 
Your friend Simplicio points out that each 
component fi of f (x) is simply a dot prod-
uct fi(x)= aT

i x (where aT is the i-th row of i 
A)—so, he argues, since each component 
of f is backwards stable, f (x) must be 
backwards stable (when computed by the 
same obvious dot-product loop for each 
component). What is wrong with this ar-
gument (assuming m > 1)? 

(ii) Give an example A for which f (x) is def-
initely not backwards stable for the obvi-
ous f̃  algorithm. 

Problem 2: (10+10+10 points) 
In figure 1 are shown, from class, the classi-
cal/modified Gram–Schmidt (CGS/MGS) and 
Householder algorithms to compute the QR factor-
ization A = Q̂R̂ (reduced: Q̂ is m × n) or A = QR (Q 
is m × m) respectively of an m × n matrix A. Recall 
that, using the QR factorization, we can solve the 
least-squares problem minkAx − bk2 by R̂x̂ = Q̂∗b. 
Recall that we can compute the right-hand side 
Q̂∗b by forming an augmented m × (n + 1) matrix 
Ă = (A,b), finding its QR factorization Ă = Q̆R̆ and 
obtaining Q̂∗b from the last column of R̆ = Q̆∗Ă. 

Figure 1: Left: Classical/Modified Gram-Schmidt 
algorithm. Right: Householder QR algorithm. (Fig-
ures borrowed from Per Persson’s 18.335 slides.) 

Explain whether this procedure is better than 
computing Q̂∗b directly for: 

(a) Classical Gram–Schmidt. 

(b) Modified Gram–Schmidt. 

(c) Householder QR. (Recall that, for Householder 
QR, we don’t actually compute Q explicitly, but 
instead store the reflectors vk and re-use them as 
needed to multiply by Q or Q∗.) 

That is, each of the above three algorithms computes 
the QR factorization of A—for each of the three al-
gorithms is it an improvement to compute Q̂∗b via 
that algorithm on Ă compared with computing Q̂ (or 
its equivalent) by that algorithm and then performing 
the Q̂∗b multiplication? 

Problem 3: (10+20+10 points) 

Suppose A and B are m×m matrices, A = A∗ , B = B∗ , 
and B is positive-definite. Consider the “general-
ized” eigenproblem of finding solutions x 6= 0 and 
λ to Ax = λ Bx, or equivalently solve the ordinary 
eigenproblem B−1Ax = λ x. (In general, B−1A is not 
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Hermitian.) Suppose that there are m distinct eigen-
values |λ1| > |λ2| > · · · > |λm| and corresponding 
eigenvectors x1, . . . ,xm. 

(a) Show that the λk are real and that x ∗ i Bx j = 0 for 
i 6= j. (Hint: multiply both sides of Ax = λ Bx by 
x ∗, similar to the derivation for Hermitian prob-
lems in class.) 

(b) Explain how to generalize the modified Gram– 
Schmidt algorithm (figure 1) to compute an 
“SR” factorization B−1A = SR where S∗BS = I. 
(That is, the columns sk of S form a basis for the 
columns of B−1A as in QR, but orthogonalized 
so that s ∗ i Bs j = 0 for i 6= j and = 1 for i = j.) 
Make sure your algorithm still requires Θ(m3) 
operations! 

(c) In exact arithmetic, what would S in the SR fac-
torization of (B−1A)k converge to as k → ∞, and 
why? (Assume the “generic” case where none 
of the eigenvectors happen to be orthogonal to 
the columns of B.) 
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