18.335 Midterm, Spring 2015

Problem 1: (10+(10+10) points)

(a) Suppose you have a forwards-stable algorithm \tilde{f} to compute $f(x) \in \mathbb{R}$ for $x \in \mathbb{R}$, i.e. $\| \tilde{f}(x)-$ $f(x)\|=\| f \| O\left(\varepsilon_{\text {mach }}\right)$. Suppose f is bounded below and analytic (has a convergent Taylor series) everywhere; suppose it has some global minimum $f_{\min }>0$ at $x_{\min }$. Suppose that we compute $x_{\text {min }}$ in floating-point arithmetic by exhaustive search: we just evaluate \tilde{f} for all $x \in \mathbb{F}$ and return the x where \tilde{f} is smallest. Is this procedure stable or unstable? Why? (Hint: look at a Taylor series of f.)
(b) Consider the function $f(x)=A x$ where $A \in$ $\mathbb{C}^{m \times n}$ is an $m \times n$ matrix.
(i) In class, we proved that naive summation (by the obvious in-order loop) is stable, and in the book it was similarly proved that the function $g(x)=b^{T} x$ (dot products of x with \bar{b}) is backwards stable for $x \in \mathbb{C}^{n}$ when computed in the obvious loop \tilde{g} [that is: for each x there exists an \tilde{x} such that $\tilde{g}(x)=g(\tilde{x})$ and $\left.\|\tilde{x}-x\|=\|x\| O\left(\varepsilon_{\text {mach }}\right)\right]$. Your friend Simplicio points out that each component f_{i} of $f(x)$ is simply a dot product $f_{i}(x)=a_{i}^{T} x$ (where a_{i}^{T} is the i-th row of $A)$-so, he argues, since each component of f is backwards stable, $f(x)$ must be backwards stable (when computed by the same obvious dot-product loop for each component). What is wrong with this argument (assuming $m>1$)?
(ii) Give an example A for which $f(x)$ is definitely not backwards stable for the obvious \tilde{f} algorithm.

Problem 2: ($10+10+10$ points)

In figure 1 are shown, from class, the classi$\mathrm{cal} /$ modified Gram-Schmidt (CGS/MGS) and Householder algorithms to compute the QR factorization $A=\hat{Q} \hat{R}$ (reduced: \hat{Q} is $m \times n$) or $A=Q R(Q$ is $m \times m$) respectively of an $m \times n$ matrix A. Recall that, using the QR factorization, we can solve the least-squares problem $\min \|A x-b\|_{2}$ by $\hat{R} \hat{x}=\hat{Q}^{*} b$. Recall that we can compute the right-hand side $\hat{Q}^{*} b$ by forming an augmented $m \times(n+1)$ matrix $\breve{A}=(A, b)$, finding its QR factorization $\breve{A}=\breve{Q} \breve{R}$ and obtaining $\hat{Q}^{*} b$ from the last column of $\breve{R}=\breve{Q} \breve{Q}^{*} \breve{A}$.

Classical/Modifi ed Gram-Schmidt

$$
\text { for } j=1 \text { to } n
$$

$$
v_{j}=a_{j}
$$

$$
\text { for } i=1 \text { to } j-1
$$

$\begin{cases}r_{i j}=q_{i}^{*} a_{j} & \text { (CGS) } \\ r_{i j}=q_{i}^{*} v_{j} & \text { (MGS) }\end{cases}$
$v_{j}=v_{j}-r_{i j} q_{i}$
$r_{j j}=\left\|v_{j}\right\|_{2}$
$q_{j}=v_{j} / r_{j j}$
Algorithm: Householder QR Factorization

$$
\text { for } k=1 \text { to } n
$$

$$
\begin{aligned}
& x=A_{k: m, k} \\
& v_{k}=\operatorname{sign}\left(x_{1}\right)\|x\|_{2} e_{1}+x \\
& v_{k}=v_{k} /\left\|v_{k}\right\|_{2} \\
& A_{k: m, k: n}=A_{k: m, k: n}-2 v_{k}\left(v_{k}^{*} A_{k: m, k: n}\right)
\end{aligned}
$$

Figure 1: Left: Classical/Modified Gram-Schmidt algorithm. Right: Householder QR algorithm. (Figures borrowed from Per Persson's 18.335 slides.)

Explain whether this procedure is better than computing $\hat{Q}^{*} b$ directly for:
(a) Classical Gram-Schmidt.
(b) Modified Gram-Schmidt.
(c) Householder QR. (Recall that, for Householder QR, we don't actually compute Q explicitly, but instead store the reflectors v_{k} and re-use them as needed to multiply by Q or Q^{*}.)

That is, each of the above three algorithms computes the QR factorization of A-for each of the three algorithms is it an improvement to compute $\hat{Q}^{*} b$ via that algorithm on \breve{A} compared with computing \hat{Q} (or its equivalent) by that algorithm and then performing the $\hat{Q}^{*} b$ multiplication?

Problem 3: (10+20+10 points)

Suppose A and B are $m \times m$ matrices, $A=A^{*}, B=B^{*}$, and B is positive-definite. Consider the "generalized" eigenproblem of finding solutions $x \neq 0$ and λ to $A x=\lambda B x$, or equivalently solve the ordinary eigenproblem $B^{-1} A x=\lambda x$. (In general, $B^{-1} A$ is not

Hermitian.) Suppose that there are m distinct eigenvalues $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{m}\right|$ and corresponding eigenvectors x_{1}, \ldots, x_{m}.
(a) Show that the λ_{k} are real and that $x_{i}^{*} B x_{j}=0$ for $i \neq j$. (Hint: multiply both sides of $A x=\lambda B x$ by x^{*}, similar to the derivation for Hermitian problems in class.)
(b) Explain how to generalize the modified GramSchmidt algorithm (figure 1) to compute an "SR" factorization $B^{-1} A=S R$ where $S^{*} B S=I$. (That is, the columns s_{k} of S form a basis for the columns of $B^{-1} A$ as in QR , but orthogonalized so that $s_{i}^{*} B s_{j}=0$ for $i \neq j$ and $=1$ for $i=j$.) Make sure your algorithm still requires $\Theta\left(m^{3}\right)$ operations!
(c) In exact arithmetic, what would S in the SR factorization of $\left(B^{-1} A\right)^{k}$ converge to as $k \rightarrow \infty$, and why? (Assume the "generic" case where none of the eigenvectors happen to be orthogonal to the columns of B.)

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

