18.335 Midterm, Spring 2015
Problem 1: (10+(10+10) points)

(a) Suppose you have a forwards-stable algorithm
f to compute f(x) € R forx € R, i.e. || f(x)—
FE)| = [1fO(&mach)- Suppose f is bounded
below and analytic (has a convergent Taylor se-
ries) everywhere; suppose it has some global
minimum fu,i, > 0 at xpip. Suppose that we
compute X, in floating-point arithmetic by ex-
haustive search: we just evaluate f for all x € F
and return the x where f is smallest. Is this pro-
cedure stable or unstable? Why? (Hint: look at
a Taylor series of f.)

(b) Consider the function f(x) = Ax where A €

C™>M is an m X n matrix.

(1) In class, we proved that naive summation
(by the obvious in-order loop) is stable,
and in the book it was similarly proved
that the function g(x) = b x (dot products
of x with b) is backwards stable for x € C"
when computed in the obvious loop & [that
is: for each x there exists an & such that
8(x) = 5(3) and [ —x]| = | O(Emaen)]
Your friend Simplicio points out that each
component f; of f(x) is simply a dot prod-
uct f;(x) = al x (where a! is the i-th row of
A)—so, he argues, since each component
of f is backwards stable, f(x) must be
backwards stable (when computed by the
same obvious dot-product loop for each
component). What is wrong with this ar-
gument (assuming m > 1)?

(ii) Give an example A for which f(x) is def-

initely not backwards stable for the obvi-

ous f algorithm.

Problem 2: (10+10+10 points)

In figure 1 are shown, from class, the classi-
cal/modified Gram-Schmidt (CGS/MGS) and
Householder algorithms to compute the QR factor-
ization A = OR (reduced: Q is m x n) or A = OR (Q
is m x m) respectively of an m x n matrix A. Recall
that, using the QR factorization, we can solve the
least-squares problem min||Ax — b||> by Rt = Q*b.
Recall that we can compute the right-hand side
Q*b by forming an augmented m x (n+ 1) matrix
A = (A,b), finding its QR factorization A = OR and
obtaining O*b from the last column of R = Q*A.

Classical/Modified Gram-Schmidt

forj=1ton
=y
fori=1t0;]—1
{ ri; = qta; (CGS)
rij = g;v; (MGS)
Vi = Yy — Tt
rii = |lvill2
4 = v;/7j

Algorithm: Householder QR Factorization

fork = lton
- B [
v = sign(wy)[|]|zes +
Ve = U/ || vl
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Figure 1: Left: Classical/Modified Gram-Schmidt
algorithm. Right: Householder QR algorithm. (Fig-
ures borrowed from Per Persson’s 18.335 slides.)

Explain whether this procedure is better than
computing Q*b directly for:

(a) Classical Gram—Schmidt.
(b) Modified Gram—Schmidt.

(c) Householder QR. (Recall that, for Householder
QR, we don’t actually compute Q explicitly, but
instead store the reflectors v, and re-use them as
needed to multiply by Q or Q*.)

That is, each of the above three algorithms computes
the QR factorization of A—for each of the three al-
gorithms is it an improvement to compute Q*b via
that algorithm on A compared with computing Q (or
its equivalent) by that algorithm and then performing
the O*b multiplication?

Problem 3: (10+20+10 points)

Suppose A and B are m x m matrices, A =A*, B = B*,
and B is positive-definite. Consider the “general-
ized” eigenproblem of finding solutions x # 0 and
A to Ax = ABx, or equivalently solve the ordinary
eigenproblem B~'Ax = Ax. (In general, B~'A is not



Hermitian.) Suppose that there are m distinct eigen-
values |4;] > |A2| > --- > |A,| and corresponding
eigenvectors Xy, ..., X.

(a)

(b)

(©

Show that the A are real and that x; Bx; = 0 for
i # j. (Hint: multiply both sides of Ax = ABx by
x*, similar to the derivation for Hermitian prob-
lems in class.)

Explain how to generalize the modified Gram—
Schmidt algorithm (figure 1) to compute an
“SR” factorization B~'A = SR where S*BS = I.
(That is, the columns s of S form a basis for the
columns of B~'A as in QR, but orthogonalized
so that s7Bs; =0 for i # jand =1 for i = j.)
Make sure your algorithm still requires @ (m?)
operations!

In exact arithmetic, what would S in the SR fac-
torization of (B~'A)¥ converge to as k — oo, and
why? (Assume the “generic” case where none
of the eigenvectors happen to be orthogonal to
the columns of B.)
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