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18.335 Problem Set 2 Solutions 

Problem 1: (14+(10+5) points) 

(a) Trefethen, exercise 15.1. In the following, I abbreviate �machine = �m, and I use the fact 
(which follows trivially from the definition of continuity) that we can replace any Lipshitz-
continuous g(O(�)) with g(0) + g0(0)O(�). I also assume that fl(x) is deterministic—by a 
stretch of Trefethen’s definitions, it could conceivably be nondeterministic in which case one 
of the answers changes as noted below, but this seems crazy to me (and doesn’t correspond 
to any real machine). Note also that, at the end of lecture 13, Trefethen points out that the 
same axioms hold for complex floating-point arithmetic as for real floating-point arithmetic 
(possibly with �m increased by a constant factor), so we don’t need to do anything special 
here for C vs. R. 

(i) Backward stable. x ⊕ x = fl(x) ⊕ fl(x) = [x(1 + �1)+ x(1 + �1)](1 + �2) = 2x̃ for |�i| ≤ �m 

and x̃ = x(1 + �1 + �2 + 2�1�2) = x[1 + O(�m)]. 

(ii) Backward stable. x ⊗ x = fl(x) ⊗ fl(x) = [x(1 + �1) × x(1 + �1)](1 + �2) = x̃2 for |�i| ≤ �m √ 
and x̃ = x(1 + �1) 1 + �2 = x[1 + O(�m)]. 

(iii) Stable but not backwards stable. x x = [fl(x)/ fl(x)](1 + �) = 1 + � (not including 
x = 0 or ∞, which give NaN). This is actually forwards stable, but there is no x̃ such 
that ̃  x = 1 so it is not backwards stable. (Under the stronger assumption of correctly x/˜ 6 
rounded arithmetic, this will give exactly 1, however.) 

(iv) Backwards stable. x x = [fl(x) − fl(x)](1 + �) = 0. This is the correct answer for x̃ = x. 
(In the crazy case where fl is not deterministic, then it might give a nonzero answer, in 
which case it is unstable.) 

(v) Unstable. It is definitely not backwards stable, because there is no data (and hence 
no way to choose x̃ to match the output). To be stable, it would have to be forwards 
stable, but it isn’t because the errors decrease more slowly than O(�m). More explicitly, 
1 ⊕ 1 ⊕ 1 ⊕ · · · summed from left to right will give ((1 + 1 )(1 + �1) + 1 )(1 + �2) · · · = 2 6 2 6 

3 10 e + �1 + �2 + · · · dropping terms of O(�2), where the coeÿcients of the �k factors 2 6 
converge to e. The number of terms is n where n satisfies n! ≈ 1/�m, which is a function 
that grows very slowly with 1/�m, and hence the error from the additions alone is bounded 
above by ≈ n�m. The key point is that the errors grow at least as fast as n�m (not even 
counting errors from truncation of the series, approximation of 1/k!, etcetera), which is 
not O(�m) because n grows slowly with decreasing �m. 

(vi) Stable. As in (e), it is not backwards stable, so the only thing is to check forwards 
stability. Again, there will be n terms in the series, where n is a slowly growing function 
of 1/�m (n! ≈ 1/�m). However, the summation errors no longer grow as n. From right 

1 1 1 to left, we are summing ⊕ ⊕ · · · ⊕ 1. But this gives (( 1 + )(1 + �n−1) + n! (n−1)! n! (n−1)! 
1 )(1 + �n−2) · · · ,and the linear terms in the �k are then bounded by (n−2)! ⎡ ⎤ 

n−1 n n−1 n n−1 X X 1 XX 1 ⎣ n − 1 X j 
�k ≤ �m = �m + ⎦ ≈ �me = O(�m). 

j! j! n! j! 
k=1 j=k k=1 j=k j=1 

The key point is that the coeÿcients of the �k coeÿcients grow smaller and smaller 
with k, rather than approaching e as for left-to-right summation, and the sum of the 
coeÿcients converges. The truncation error is of O(�m), and we assume 1/k! can also be 
calculated to within O(�m), e.g. via Stirling’s approximation for large k, so the overall 
error is O(�m) and the algorithm is forwards stable. 
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(vii) Forwards stable. Not backwards stable since no data, but what about forwards stability? 
Supposing sin(x) is computed in a stable manner, then f )] sin(x) = sin(x + δ) · [1 + O(�m 

for |δ| = ). It follows that, in the vicinity of x = sin function can only |x|O(�m π, the f 

change sign within |δ| = πO(�m) of x = π. sin(x) ⊗ f 0) ≤ 0, Hence, checking for f sin(x 
where x0 is the floating-point successor to x (nextfloat(x) in Julia) yields π[1+O(�m)], 
a forwards-stable result. 

(b) Trefethen, exercise 16.1. Note that we are free to switch norms as needed, by norm equivalence. 
Notation: the floating-point algorithm for computing f(A) = QA will be denoted f̃(A) = gQA; I will assume that we simply use the obvious three-loop algorithm, i.e. computing the 
row–column dot products with in-order (“recursive”) summation, allowing us to re-use the 
summation error analysis from pset 1. 

(i) We will proceed by induction on k: first, we will prove the base case, that multiplying 
A by a single Q is backwards stable, and then we will do the inductive step (assume it 
is true for k, prove it for k + 1). 

First, the base case: we need to find a δA with kδAk = kAkO(�machine) such that g QA − Ak = kQ(Q∗ g QA − QAk in the QA = Q(A + δA). Since kδAk = kQ∗ g QA − A)k = kg 

norm, however, this is equivalent to showing kg = QA − QAk L2 kAkO(�machine); that 
is, we can look at the forwards error, which is a bit easier. It is suÿcient to look at the P 
error in the ij-th element of QA, i.e. the error in computing k qikakj . Assuming we 
do this sum by a straightforward loop, the analysis is exactly the same as in problem 2, 
except that there is an additional (1 + �) factor in each term for the error in the product 
qikakj [or (1 + 2�) if we include the rounding of qik to q̃ik = fl(qik)]. Hence, the error in P 
the ij-th element is bounded by mO(�machine) |qikakj |, and (using the unitarity of k P 
Q, which implies that |qik| ≤ 1) this in turn is bounded by mO(�machine) |akj | ≤ P P k 
mO(�machine) kj |akj | ≤ mO(�machine)kAk (since kj |akj | is just an L1 Frobenius 

2 norm of A, which is within a constant factor of any other norm). Summing m of 
these errors in the individual elements of QA, again using norm equivalence, we obtain P 
kg |(g QA − QAk = O( ij QA − QA)ij |) = m3O(�machine)kAk. Thus, we have proved 

3 backwards stability for multiplying by one unitary matrix (with a overly pessimistic m 
coeÿcient, but that doesn’t matter here). 

Now, we will show by induction that multiplying by k unitary matrices is backwards 
stable. Suppose we have proved it for k, and want to prove for k + 1. That, con-
sider QQk · · · Q1A. By assumption, Qk · · · Q1A is backwards stable, and hence B̃ = 

Qk ̂  · · · Q1A = Qk · · · Q1(A+ δAk) for some kδAkk = O(�machine)kAk. Also, from above, gQB̃ = Q(B̃+δB̃) for some kδ ˜ Bk = kQk · · · Bk = O(�machine)k ˜ Q1(A+δAk)kO(�machine) = 
= kA + δAkkO(�machine) ≤ kAkO(�machine) + kδAkkO(�machine) kAkO(�machine). g Hence, QQk ̂  · · · Q1A = QB̃ = Q[Qk · · · Q1(A + δAk) + δB̃] = QQk · · · Q1(A + δA) where 

δA = δAk + [Q
∗ 
1 · · · Q∗ ]δB̃ and kδAk ≤ kδAkk + kδ ˜ k Bk = O(�machine)kAk. Q.E.D. 

∗ (ii) Consider XA, where X is some rank-1 matrix xy and A has rank > 1. The product 
XA has rank 1 in exact arithmetic, but after floating-point errors it is unlikely that gXA 
will be exactly rank 1. Hence it is not backwards stable, because XÃ will be rank 1 

˜ g regardless of A, and thus is 6= XA. (See also example 15.2 in the text.) 
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Problem 2: (10+10 points) 
T T (a) Denote the rows of A by a1 , . . . , a . Consider the unit ball in the L∞ norm, the set {x ∈ m 

Cn : kxk∞ ≤ 1}. Any vector Ax in the image of this set satisfies: X X 
T kAxk∞ = max |aj x| = max aj,kxk ≤ max |aj,k| = max kaj k, 

j∈1:m j∈1:m j∈1:m j∈1:m 
k∈1:n k∈1:n 

since |xk| ≤ 1 in the L∞ unit ball. Furthermore, this bound is achieved when xk = sign(aj,k) 
where j = argmaxj kaj k. Hence kAk∞ = maxj kaj k, corresponding to (3.10). Q.E.D. 

If we look in the Julia source code, we find that this norm is computed by summing the 
absolute values of each row of A and then takes the maximum, exactly as in (3.10). 

(b) To obtain µ × ν submatrix B of the m × n matrix A by selecting a subset of the rows and 
columns of A, we simply multiply A on the left and right by µ × m and n × ν matrices as 
follows: ⎞ ⎛ ⎞ ⎛ ⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎠ 

1 1 ⎜⎝ 1 ⎟⎠ 1 B = A 
. . . . . . 

where there are 1’s in the columns/rows to be selected. More precisely, if we want a subset R 
of the rows of A and a subset C of the columns of A, then we compute B = DRADC 

T , where 
the “deletion matrix” for an ordered set S of indices is given by (DS )ij = 1 if j equals the i-th 
element of S and (DS )ij = 0 otherwise; DR is µ × m and DC is ν × n . 

From Trefethen, chapter 3, we have kBkp ≤ kAkpkDRkpkDC kp. So, we merely need to �P �1/p show kDS kp P 
≤ 1 and the result follows. But this is trivial: kDS xkp = |xi|p 

i∈S ≤ 
1/p |xi|p] = kxkp, so kDS kp ≤ 1 and we obtain kBkp ≤ kAkp. [ i 

In Julia, we construct a random 10 × 7 A by A=randn(10,7), and an arbitrary 3 × 4 subset of 
this matrix by B = A[[1,3,4],[2,3,5,6]]. Then norm(B) <= norm(A) (the p = 2 norm) 
returns true. As a more careful test, we can also try computing thousands of such random 
matrices and check that the maximum of norm(B)/norm(A) is < 1; a one-liner to do this 
in Julia is maximum(Float64[let A=randn(10,7); norm(A[1:3,1:4])/norm(A); end for 
i=1:10000]), which returns roughly 0.92. However, a quick check with a single matrix is 
acceptable here—such numerical “spot checks” are extremely useful to catch gross errors, but 
of course they aren’t a substitute for proof, only a supplement (or sometimes a suggestive 
guide, if the numerical results precede the proof). 

Problem 3: (21 points) 

To get the condition number of g(A) = Ax, we first need to to get the Jacobian. The most natural 
∂gi definition would have entries ∂Ajk 

, but this would result in a 3-index object (a “3d matrix” or “rank 
3 tensor”), which would require us to involve techniques from multilinear algebra. Instead, we can 
use ordinary linear algebra with an ordinary Jacobian matrix if we treat the input A as a “1d” 
vector a of length mn: ⎛ ⎞ 

(A1,:)
T 

(A2,:)
T ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
a = . . . 

(Am,:)
T 

, 
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i.e. a consists of the rows of A (transposed to column vectors), one after the other, in sequence 
(i.e., row-major storage of A). (We could also stack the columns; this isomorphism is called the 
“vectorization” of A.) There are m outputs fi of Ax, each one of which dots one row of A with x. 
Hence, in terms of a, the m × (mn) Jacobian matrix looks like ⎛ ⎞ 

Tx 
Tx ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
J = . . . . 

Tx 

kJzk Since this is block-diagonal, it is easy to figure out sup , as long as we pick a norm of the z 6=0 kzk 
inputs A that allows us to easily compute the corresponding norm of the “vector” z, and so it is 
convenient to choose the the Frobenius norm so that kAkF = kzk2. To maximize kJzk , let’s write kzk 
z as ⎞ ⎛ ⎜⎜⎜⎝ 

x1 

x2 
. . . 

xm 

⎟⎟⎟⎠ 
z = 

in terms of vectors xk ∈ Cn . Then 

· + |xT xm|2 

∗ 

kJzk2 · kJk2 = = , 

s 
T 2 T 2 | | | | + + · x x x x 1 2 

∗ ∗ x1x1 + x2x2 + · · · + x xm m kzk2 

T which is clearly maximized when xk = αkx̄ (to maximize the dot products x xk → |αk|2kxk22 over q P 
|αk |2 

all vectors xk of a given length) for some scalar αk ∈ C, giving kJk2 = kxk2 P = kxk2. |αk |2 

kJk kxk2 kAkF Hence, the condition number is κ(A) = = , which is almost exactly the same the kAxk/kAk kAxk2 

condition number for f(x) = Ax, except that we substitute kAkF for kAk2. Due to the equivalence 
of norms, however, this means that the condition numbers di˙er only by at most a constant factor 
independent of A or x. 

(There are other possible choices of norm where this computation is reasonable to carry out, but 
in any case you should get something similar up to a constant factor.) 

Problem 4: (10+10+10 points) 

(a) Trefethen, probem 4.5. It is suÿcient to show that the reduced SVD AV̂ = Û Σ̂ is real, since 
the remaining columns of U and V are formed as a basis for the orthogonal complement 
of the columns of Û and V̂ , and if the latter are real then their complement is obviously 
also real. Furthermore, it is suÿcient to show that Û can be chosen real, since (from class) 
A∗ ui/σi = vi for each column ui of Û and vi of Û , and A∗ is real. The columns ui are 
eigenvectors of A∗A = B, which is a real-symmetric matrix, i.e. Bui = σi 

2ui. Suppose that 
the ui are not real. Then the real and imaginary parts of ui are themselves eigenvectors (if 
they are nonzero) with eigenvalue σ2 (proof: take the real and imaginary parts of Bui = σi 

2ui, i 
since B and σ2 are real). Hence, taking either the real or imaginary parts of the complex ui i 

(whichever is nonzero) and normalizing them to unit length, we obtain a new purely real Û . 
Q.E.D.1 

1There is a slight wrinkle if there are repeated eigenvalues, e.g. σ1 = σ2, because the real or imaginary parts of u1 

and u2 might not be orthogonal. However, taken together, the real and imaginary parts of any multiple eigenvalues 
must span the same space, and hence we can find a real orthonormal basis with Gram-Schmidt or whatever. 
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(b) Trefethen, problem 5.2. We just need to show that, for any A ∈ Cm×n with rank < n and for 
any � > 0, we can find sequence of full-rank matrices B that eventually satisfies kA − Bk2 < �. 
Form the SVD A = UΣV ∗ with singular values σ1, . . . , σr where r < n is the rank of A. Let 
B = U Σ̃V ∗ where Σ̃ is the same as Σ except that it has n − r additional nonzero singular 
values σk>r = �/2. From equation 5.4 in the book, kB − Ak2 = σr+1 = �/2 < �, noting that 
A = Br in the notation of the book. We can then make a sequence of such matrices e.g. by 
letting � = σr2

−k for k = 1, 2, . . .. 

(c) Trefethen, problem 5.4. From A = UΣV ∗ , recall that AV = UΣ and A∗U = V Σ. Therefore, � �� � � � � � � � 
A∗ V ±A∗U V Σ V 

= = ± = ± Σ 
A ±U AV ±UΣ ±U � � 

A∗ 
and hence (vi; ±ui) is an eigenvector of with eigenvalue ±σi. Noting that these A √ 
vectors (vi; ±ui) are orthogonal by construction and only need to be divided by 2 to be 
normalized, we immediately obtain the diagonalization � � � � 

A∗ +Σ 
= Q Q ∗ 

A −Σ 

for � � √ V V 
Q = / 2. 

+U −U 
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