18.335 Mid-term Exam (Fall 2009)

Problem 1: Caches and QR (30 pts)

In class, we learned the Gram-Schmidt and modified Gram-Schmidt algorithms to form the (reduced) $A=Q R$ factorization of an $m \times n$ matrix A (with independent columns a_{1}, a_{2}, \ldots and $n \leq m$). In particular, for simplicity let us consider the computation of the $m \times n$ matrix Q only (whose columns are the orthonormal basis for the column space of A), not worrying about keeping track of R, and for simplicity consider classical (not modified) Gram-Schmidt:

$$
\begin{aligned}
& q_{1}=a_{1} /\left\|a_{1}\right\| \\
& \text { for } j=2,3, \ldots, n \\
& \quad v_{j}=a_{j}-\sum_{i=1}^{j-1} q_{i}\left(q_{i}^{*} a_{j}\right) \\
& \quad q_{j}=v_{j} /\left\|v_{j}\right\|
\end{aligned}
$$

In this question, you will consider the cache complexity of this algorithm with an ideal cache of size Z (no cache lines). If the algorithm is implemented directly as written above, there is little temporal locality and $\Theta\left(m n^{2}\right)$ misses are required, independent of Z. You are also given that you can multiply an $m \times n$ matrix with an $n \times p$ matrix using $\Theta(m n+n p+m p+m n p / \sqrt{Z})$ misses, and can add two $m \times n$ matrices using $\Theta(m n)$ misses.

1. Suppose that n is even and we have performed QR factorization (by some algorithm) on the first-half $n / 2$ columns of A to obtain an $m \times(n / 2)$ matrix Q_{1}, and also on the second-half $n / 2$ columns separately to obtain an $m \times(n / 2)$ matrix Q_{2}. Using Q_{1} and Q_{2}, describe how to (efficiently) find the $m \times n$ matrix Q from the QR factorization of A, and give the number of cache misses (in Θ notation, ignoring constant factors).
2. Describe an algorithm to compute the Q from the QR factorization of A that has fewer than $\Theta\left(m n^{2}\right)$ misses asymptotically, and give the number of cache misses (in Θ notation, ignoring constant factors). (You can describe either a cache-oblivious or blocked algorithm, but I find a recursive cacheoblivious algorithm easier.) You can assume that n is a power-of-2 size, for convenience.

Problem 2: Lanczos (30 pts)

Let A be a Hermitian $m \times m$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}$ and corresponding orthonormal eigenvectors $\hat{q}_{1}, \hat{q}_{2}, \ldots, \hat{q}_{m}$. Consider the Lanczos algorithm applied to A :

$$
\begin{aligned}
& \beta_{0}=0, q_{0}=0, b=\text { arbitrary, } q_{1}=b /\|b\| \\
& \text { for } n=1,2,3, \ldots \\
& \quad v=A q_{n} \\
& \alpha_{n}=q_{n}^{T} v \\
& v \leftarrow v-\beta_{n-1} q_{n-1}-\alpha_{n} q_{n} \\
& \beta_{n}=\|v\| \\
& q_{n+1}=v / \beta_{n}
\end{aligned}
$$

After m steps, recall that this gives a unitary matrix $Q=\left(q_{1} q_{2} \cdots q_{m}\right)$ and a
tridiagonal matrix $T=\left(\begin{array}{cccc}\alpha_{1} & \beta_{1} & & \\ \beta_{1} & \alpha_{2} & \beta_{2} & \\ & \beta_{2} & \alpha_{3} & \ddots \\ & & \ddots & \ddots\end{array}\right)$ such that $A Q=Q T$.
Suppose that the initial b is orthogonal to one of the eigenvectors \hat{q}_{i} corresponding to a simple (not repeated) eigenvalue λ_{i}. Explain why the Lanczos process must break down ($\beta_{n}=0$ for some n) if it is carried out in exact arithmetic (no rounding), and the T_{n} matrix (the $n \times n$ upper-left corner of T) at the n-th step (where breakdown occurs) cannot have an eigenvalue λ_{i}.

Problem 3: Backwards stability (30 pts)

Let A be any invertible $m \times m$ matrix and b be any vector in \mathbb{C}^{n}, and consider the function $f(A, b)=A^{-1} b$: that is, the function returning the solution to $A x=$ b. Now, consider the analogous function $\tilde{f}(A, b)$ implemented in floating-point arithmetic by a backwards-stable algorithm, e.g. Gaussian elimination with partial pivoting, or Householder QR factorization. That is, if we let $f(A, b)=x$ (the solution: x is the output in this case) and $\tilde{f}(A, b)-f(A, b)=\delta x$ (the rounding error in the solution), then there is some δA and δb where $(A+\delta A)(x+$ $\delta x)=b+\delta b$ and δA and δb are \ldots. (yadda yadda...you should know the precise definition by now).

Show that if $\tilde{f}(A, b)$ is backwards stable with respect to the inputs A and b, then it must be backwards stable with respect to A alone. That is, find a small $\delta A^{\prime}=\|A\| O\left(\varepsilon_{\text {machine }}\right)$ such that $\left(A+\delta A^{\prime}\right)(x+\delta x)=b$.
(Hint: if you need to construct a matrix to turn one vector into another, you can always use a unitary rotation followed by a rescaling. And, of course, you can pick any convenient norm that you want, by the equivalence of norms.)

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

