
18.335 Mid-term Exam (Fall 2009)

Problem 1: Caches and QR (30 pts)

In class, we learned the Gram-Schmidt and modified Gram-Schmidt algorithms
to form the (reduced) A = QR factorization of an m × n matrix A (with in-
dependent columns a1, a2, . . . and n ≤ m). In particular, for simplicity let us
consider the computation of the m × n matrix Q only (whose columns are the
orthonormal basis for the column space of A), not worrying about keeping track
of R, and for simplicity consider classical (not modified) Gram-Schmidt:

q1 = a1/ka1k
for j = 2, 3, . . . , n Pj−1 ∗ vj = aj − i=1 qi(qi aj)

qj = vj /kvj k

In this question, you will consider the cache complexity of this algorithm with an
ideal cache of size Z (no cache lines). If the algorithm is implemented directly as
written above, there is little temporal locality and Θ(mn2) misses are required,
independent of Z. You are also given that you can multiply an m × n matrix √
with an n × p matrix using Θ(mn + np + mp + mnp/ Z) misses, and can add
two m × n matrices using Θ(mn) misses.

1. Suppose that n is even and we have performed QR factorization (by some
algorithm) on the first-half n/2 columns of A to obtain an m × (n/2)
matrix Q1, and also on the second-half n/2 columns separately to obtain
an m × (n/2) matrix Q2. Using Q1 and Q2 , describe how to (eÿciently)
find the m × n matrix Q from the QR factorization of A, and give the
number of cache misses (in Θ notation, ignoring constant factors).

2. Describe an algorithm to compute the Q from the QR factorization of A
that has fewer than Θ(mn2) misses asymptotically, and give the number of
cache misses (in Θ notation, ignoring constant factors). (You can describe
either a cache-oblivious or blocked algorithm, but I find a recursive cache-
oblivious algorithm easier.) You can assume that n is a power-of-2 size,
for convenience.

1

Problem 2: Lanczos (30 pts)

Let A be a Hermitian m × m matrix with eigenvalues λ1, λ2, · · · , λm and cor-
responding orthonormal eigenvectors q̂1, q̂2, . . . , q̂m. Consider the Lanczos algo-
rithm applied to A:

β0 = 0, q0 = 0, b = arbitrary, q1 = b/kbk
for n = 1, 2, 3, . . .

v = Aqn
T αn = q v n

v ← v − βn−1qn−1 − αnqn

βn = kvk

⎞

qn+1 = v/βn

After m steps, recall that this gives a unitary matrix Q ⎛ = (q1q2 · · · qm) and a

tridiagonal matrix T =

⎜⎜⎜⎜⎝

α1 β1

β1 α2 β2

. . β2 α3 .
.

⎟⎟⎟⎟⎠
such that AQ = QT .

Suppose that the initial b is orthogonal to one of the eigenvectors q̂i corre-
sponding to a simple (not repeated) eigenvalue λi. Explain why the Lanczos
process must break down (βn = 0 for some n) if it is carried out in exact arith-
metic (no rounding), and the Tn matrix (the n × n upper-left corner of T) at
the n-th step (where breakdown occurs) cannot have an eigenvalue λi.

Problem 3: Backwards stability (30 pts)

Let A be any invertible m×m matrix and b be any vector in Cn, and consider the
function f(A, b) = A−1b: that is, the function returning the solution to Ax =
b. Now, consider the analogous function f̃(A, b) implemented in floating-point
arithmetic by a backwards-stable algorithm, e.g. Gaussian elimination with
partial pivoting, or Householder QR factorization. That is, if we let f(A, b) = x
(the solution: x is the output in this case) and f̃(A, b) − f(A, b) = δx (the
rounding error in the solution), then there is some δA and δb where (A+δA)(x+
δx) = b + δb and δA and δb are (yadda yadda...you should know the precise
definition by now).

Show that if f̃(A, b) is backwards stable with respect to the inputs A and b,
then it must be backwards stable with respect to A alone. That is, find a small
δA0 = kAkO(εmachine) such that (A + δA0)(x + δx) = b.

(Hint: if you need to construct a matrix to turn one vector into another, you
can always use a unitary rotation followed by a rescaling. And, of course, you
can pick any convenient norm that you want, by the equivalence of norms.)

2

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page

