
18.335 Problem Set 3 Solutions 

Problem 2: QR and orthogonal bases (10+(5+5+5) points) 
(a) Trefethen, problem 10.4: 

(i) e.g. consider θ = π/2 (c = 0, s = 1): Je1 = −e2 and Je2 = e1, while Fe1 = e2 and Fe2 = e1. 
J rotates clockwise in the plane by θ . F is easier to interpret if we write it as J multiplied 
on the right by [−1,0;0, 1]: i.e., F corresponds to a mirror reflection through the y (e2) axis 
followed by clockwise rotation by θ . More subtly, F corresponds to reflection through a mirror 
plane corresponding to the y axis rotated clockwise by θ /2. That is, let c2 = cos(θ /2) and 

2 2 s2 = cos(θ/2), in which case (recalling the identities c2 − s2 = c, 2s2c2 = s): � �� �� � � �� � � � 
c2 s2 −1 0 c2 −s2 −c2 s2 c2 −s2 −c s 

= = = F, −s2 c2 0 1 s2 c2 s2 c2 s2 c2 s c 

which shows that F is reflection through the y axis rotated by θ /2. 

(ii) The key thing is to focus on how we perform elimination under a single column of A, which we 
then repeat for each column. For Householder, this is done by a single Householder rotation. 
Here, since we are using 2 × 2 rotations, we have to eliminate under a column one number at a � � � � 

a kxk2 time: given 2-component vector x = into Jx = , where J is clockwise rotation b 0 
by θ = tan−1(b/a) [or, on a computer, atan2(b,a)]. Then we just do this working “bottom-up” 
from the column: rotate the bottom two rows to introduce one zero, then the next two rows to 
introduce a second zero, etc. 

(iii) The flops to compute the J matrix itself are asymptotically irrelevant, because once J is com-
puted it is applied to many columns (all columns from the current one to the right). To multiply 
J by a single 2-component vector requires 4 multiplications and 2 additions, or 6 flops. That 
is, 6 flops per row per column of the matrix. In contrast, Householder requires each column x 
to be rotated via x = x − 2v(v ∗ x). If x has m components, v ∗ x requires m multiplications and 
m − 1 additions, multiplication by 2v requires m more multiplications, and then subtraction from 
x requires m more additions, for 4m − 1 flops overall. That is, asymptotically 4 flops per row per 
column. The 6 flops of Givens is 50% more than the 4 of Householder. 

The reason that Givens is still considered interesting and useful is that (as we shall see in the 
next problem set), it can be used to exploit sparsity: because it rotates only two elements at a 
time in each column, from the bottom up, if a column ends in zeros then the zero portion of the 
column can be skipped. 

(b) If A = QR, then B = RQ = Q∗AQ = Q−1AQ is a similarity transformation, and hence has the same 
eigenvalues as shown in the book. Numerically (and as explained in class and in lecture 28), doing 
this repeatedly for a Hermitian A (the unshifted QR algorithm) converges to a diagonal matrix Λ 
of the eigenvalues in descending order. To get the eigenvectors, we observe that if the Q matrices 
from each step are Q1, Q2, and so on, then we are computing · · ·Q∗ 2Q1 

∗AQ1Q2 · · · = Λ, or A = QΛQ∗ 

where Q = Q1Q2 · · · . By comparison to the formula for diagonalizing A, the columns of Q are the 
eigenvectors. 

(c) Trefethen, problem 28.2: 

(i) In general, ri j is nonzero (for i < j) if column i is non-orthogonal to column j. For a tridiagonal 
matrix A, only columns within two columns of one another are non-orthogonal (overlapping in 
the nonzero entries), so R should only be nonzero (in general) for the diagonals and for two 
entries above each diagonal; i.e. ri j is nonzero only for i = j, i = j − 1, and i = j − 2. 
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Each column of the Q matrix involves a linear combination of all the previous columns, by 
induction (i.e. q2uses q1, q3uses q2 and q1, q4 uses q3 and q2, q5 uses q4 and q3, and so on). 
This means that an entry (i, j) of Q is zero (in general) only if ai,1: j = 0 (i.e., that entire row 
of A is zero up to the j-th column). For the case of tridiagonal A, this means that Q will have 
upper-Hessenberg form. 

(ii) Note: In the problem, you are told that A is symmetric and tridiagonal. You must also assume 
that A is real, or alternatively that A is Hermitian and tridiagonal. (The problem clearly intended 
this, since tridiagonal matrices only arise in the QR method if the starting point is Hermitian.) 
In contrast, if A is complex tridiagonal with AT = A, the stated result is not true (RQ is not in 
general tridiagonal, as can easily be verified using a random tridiagonal complex A in Julia). 

It is sufficient to show that RQ is upper Hessenberg: since RQ = Q∗AQ and A is Hermitian, 
then RQ is Hermitian and upper-Hessenberg implies tridiagonal. To show that RQ is upper-
Hessenberg, all we need is the fact that R is upper-triangular and Q is upper-Hessenberg. 

� � 

Consider the (i, j) entry of RQ, which is given by ∑k ri,kqk, j. ri,k = 0 if i > k since R is up-
per triangular, and qk, j = 0 if k > j + 1 since Q is upper-Hessenberg, and hence ri,kqk, j =6 0 only 

� 

when i ≤ k ≤ j + 1, which is only true if i ≤ j + 1. Thus the (i, j) entry of RQ is zero if i > j + 1 
and thus RQ is upper-Hessenberg. 

� 

(iii) Obviously, if A is tridiagonal (or even just upper-Hessenberg), most of each column is already 
zero—we only need to introduce one zero into each column below the diagonal. Hence, for each 
column k we only need to do one 2 × 2 Givens rotation or 2 × 2 Householder reflection of the 

k-th and (k + 1)-st rows, rotating 
· → • 

. Each 2 × 2 rotation/reflection requires 6 · 0 
flops (multiping a 2-component vector by a 2 × 2 matrix), and we need to do it for all columns 
starting from the k-th. However, actually we only need to do it for 3 columns for each k, since 
from above the conversion from A to R only introduces one additional zero above each diagonal, 
so most of the rotations in a given row are zero. That is, the process looks like ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ 
· · • • • · · · · · · ⎜⎜⎜⎜⎜⎜⎝ 

· · · 
· · · 
· · · 
· · · 

⎟⎟⎟⎟⎟⎟⎠ 

→ 

⎜⎜⎜⎜⎜⎜⎝ 

0 
· · · 
· · · 
· · · 

⎟⎟⎟⎟⎟⎟⎠ 

→ 

⎜⎜⎜⎜⎜⎜⎝ 

0 ⎟⎟⎟⎟⎟⎟⎠ 

→ 

⎜⎜⎜⎜⎜⎜⎝ 

0 · · · 
0 0 

, 0 • • · · · 
· · · · · · 

· · · · · · · · 

where • indicates the entries that change on each step. Notice that it gradually converts A to 
R, with the two nonzero entries above each diagonal as explained above, and that each Givens 
rotation need only operate on three columns. Hence, only O(m) flops are required, compared to 
O(m3) for ordinary QR! [Getting the exact number requires more care that I won’t bother with, 
since we can no longer sweep under the rug the O(m) operations required to construct the 2 × 2 
Givens or Householder matrix, etc.] 

Problem 2: Schur fine (10+15 points) 
(a) First, let us show that T is normal: substituting A = QT Q∗ into AA∗ = A∗A yields QT Q∗QT ∗Q∗ = 

QT ∗Q∗QT Q∗ and hence (cancelling the Qs) T T ∗ = T ∗T . 

The (1,1) entry of T ∗T is the squared L2 norm (k · k2
2) of the first column of T , i.e. |t1,1|2 since 

T is upper triangular, and the (1,1) entry of T T ∗ is the squared L2 norm of the first row of T , i.e. 
∑i |t1,i|2. For these to be equal, we must obviously have t1,i = 0 for i > 1, i.e. that the first row is 

⎟⎟⎟⎟⎟⎟⎠ 
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diagonal. 

We proceed by induction. Suppose that the first j − 1 rows of T are diagonal, and we want to prove 
this of row j. The ( j, j) entry of T ∗T is the squared norm of the j-th column, i.e. ∑i≤ j |ti, j|2, but this 
is just |t j, j|2 since ti, j = 0 for i < j by induction. The ( j, j) entry of T T ∗ is the squared norm of the 
j-th row, i.e. ∑i≥ j |t j,i|2. For this to equal |t j, j|2, we must have t j,i = 0 for i > j, and hence the j-th 
row is diagonal. Q.E.D. 

(b) The eigenvalues are the roots of det(T − λ I) = ∏i(ti,i − λ ) = 0—since T is upper-triangular, the roots 
are obviously therefore λ = ti,i for i = 1, . . . ,m. To get the eigenvector for a given λ = ti,i, it suffices 
to compute the eigenvector x of T , since the corresponding eigenvector of A is Qx. 

x satisfies ⎛ ⎞⎛ ⎞ 
T1 u B x1 

∗ 0 = (T − ti,iI)x = ⎝ 0 v ⎠⎝ α ⎠ , 
T2 x2 

where we have broken up T −ti,iI into the first i−1 rows (T1 uB), the i-th row (which has a zero on the 
diagonal), and the last m − i rows T2; similarly, we have broken up x into the first i − 1 rows x1, the i-th 
row α , and the last m − i rows x2. Here, T1 ∈ C(i−1)×(i−1) and T2 ∈ C(m−i)×(m−i) are upper-triangular, 
and are non-singular because by assumption there are no repeated eigenvalues and hence no other t j, j 

equals ti,i. u ∈ Ci−1, v ∈ Cm−i , and B ∈ C(i−1)×(m−i) come from the upper triangle of T and can be 
anything. Taking the last m − i rows of the above equation, we have T2x2 = 0, and hence x2 = 0 since 
T2 is invertible. Furthermore, we can scale x arbitrarily, so we set α = 1. The first i − 1 rows then give 
us the equation T1x1 + u = 0, which leads to an upper-triangular system T1x1 = −u that we can solve 
for x1. 

Now, let us count the number of operations. For the i-th eigenvalue ti,i, to solve for x1 requires 
∼ (i − 1)2 ∼ i2 flops to do backsubstitution on an (i − 1)×(i− 1) system T1x1 = −u. Then to compute 
the eigenvector Qx of A (exploiting the m − i zeros in x) requires ∼ 2mi flops. Adding these up for 
i = 1 . . .m, we obtain ∑m

i=1 i
2 ∼ m3/3, and 2m∑

m−1 i ∼ m , and hence the overall cost is ∼ 4 3 flops i=0
3 

3 m 
(K = 4/3). 

Problem 3: Caches and backsubstitution (5+15 points) 

(a) For each column of X we get a cache miss to read each entry ri j of the matrix R, an there are roughly 
m2/2 of these. For large enough m, where m2 � Z, these are no-longer in-cache when the next column 
is processed (because the entire matrix R is read in for each column before re-using any ri j for the next 
column) and hence incur new misses on each of the n columns. Hence there are at least m2n/2, or 

2 2 Θ(m n) misses. There are also Θ(m n) misses in reading X , but this only change the constant factor. 
The Θ(mn) misses in reading B (each entry is used exactly once) are asymptotically negligible. [Since 

2 Θ(m n) does not depend on Z there is no asymptotic benefit from the cache: we have a pessimal 
cache-oblivious algorithm that achieves the worst case independent of Z.] 

(b) We can solve this problem in a cache-oblivious or cache-aware fashion. I find the cache-oblivious 
m algorithm to be more beautiful, so let’s do that. We’ll divide R, X , and B into 2 × m blocks for 2 

sufficiently large m:1 � �� � � � 
R11 R12 X11 X12 B11 B12 
0 R22 X21 X22 

= B21 B22 
, 

�  �   �  � � � � �   � � � � m m m m m m m m 1If m is not even, then we round as needed: R11 is × , R12 is × , R21 is × , and R22is × ; similarly 2 2 2 2 2 2 2 2 
for X and B. These bookkeeping details don’t change anything, though, so it is fine to just assume that m is a power of 2 for simplicity. 
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where R11 and R22 are upper-triangular. Now we solve this, analogous to backsubstitution, from 
bottom to top. First, for k = 1,2, we solve 

R22X2k = B2k 

recursively for X2k. Then, for k = 1,2 we solve 

R11X1k = B1k − R12X2k 

recursively for X1k. We use a cache-optimal algorithm (from class) for the dense matrix multiplies√ 
R12X2k, which requires f (m) ∈ Θ(m3/ Z) misses for each m 

2 × m 
2 multiply. The number Q(m) of 

cache misses then satisfies the recurrence: 

Q(m) = 4Q(m/2)+ 2 f (m)+ 4m2 , 

where the 4Q(m/2) is for the four recursive backsubsitutions and the 4m2 is for the two matrix 
subtractions B1k − R12X2k. This recurrence terminates when the problem fits in cache, i.e. when 

2 2m + m2/2 ≤ Z, at which point only ∼ 3m2/2 misses are required. (Since we are only interested in 
the asymptotic Θ results, these little factors of 3 and 4 don’t matter much, and I’ll be dropping them 
soon.) Noting that f (m/2) ≈ f (m)/8 , we can solve this recurrence as in class by just plugging it in a 
few times and seeing the pattern: 

2 Q(m) ≈ 4[4Q(m/4)+ 2 f (m)/8 + 4m2/4]+ 2 f (m)+ 4m � � 

= 42Q(m/4)+ 2 f (m) 1 + 
1 

+ 4m2 [1 + 1] 
2 � � 

≈ 43Q(m/8)+ 2 f (m) 1 + 
1 
+ 

1 
+ 4m2 [1+ 1 + 1] 

2 22 

≈ · · · � � 

≈ 4k
Θ[(m/2k)2]+ 2 f (m) 1+ 

1 
+ · · · + 

1 
+ 4m2 [k] 

2k−1 2 

≈ Θ(m2)+ Θ(m3/ 
√ 

Z)+ Θ(m2)k h i 
1 1 where 1+ 2 + · · · + 2k−1 ≤ 2 and k is the number of times we have to divide the problem to fit in 

cache, i.e. 3(m/2k)2/2 ≈ Z so k is Θ[log(m2/Z)]. Hence, for large m where the m3term dominates 
over the m2 and m2 logm terms, we obtain 

3/ 
√ 

Q(m;Z) = Θ(m Z) 

and hence we can, indeed, achieve the same asymptotic cache complexity as for matrix multiplication. 

We could also get the same cache complexity in a cache-aware fashion by blocking the problem √ 
into m/b blocks of size b × b, where b is some Θ( Z) size chosen so that pairwise operations on 
the individual blocks fit in cache. Again, one would work on rows of blocks from bottom to top, and 
the algorithm would look much like the ordinary backsubstitution algorithm except that the numbers 
bi j etcetera are replaced by blocks. The number of misses is Θ(b2) = Θ(Z) per block, and there √ n 2 are Θ( mb × mb × b

n ) block operations, hence Θ( mb 

2
3 × b2) = Θ(m n/ Z) misses. This is a perfectly 

acceptable answer, too. 
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