Lecture 16 The QR Algorithm II

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson

November 2, 2006

Simultaneous Inverse Iteration \Longleftrightarrow QR Algorithm

- Last lecture we showed that "pure" QR \Longleftrightarrow simultaneous iteration applied to I, and the first column evolves as in power iteration
- But it is also equivalent to simultaneous inverse iteration applied to a "flipped" I, and the last column evolves as in inverse iteration
- To see this, recall that $A^{k}=\underline{Q}^{(k)} \underline{R}^{(k)}$ with

$$
\underline{Q}^{(k)}=\prod_{j=1}^{k} Q^{(j)}=\left[q_{1}^{(k)}\left|q_{2}^{(k)}\right| \cdots \mid q_{m}^{(k)}\right]
$$

- Invert and use that A^{-1} is symmetric:

$$
A^{-k}=\left(\underline{R}^{(k)}\right)^{-1} \underline{Q}^{(k) T}=\underline{Q}^{(k)}\left(\underline{R}^{(k)}\right)^{-T}
$$

Simultaneous Inverse Iteration \Longleftrightarrow QR Algorithm

- Introduce the "flipping" permutation matrix

$$
P=\left[\begin{array}{llll}
& & & 1 \\
& & & 1 \\
& \ldots & & \\
1 & & &
\end{array}\right]
$$

and rewrite that last expression as

$$
A^{-k} P=\left[\underline{Q}^{(k)} P\right]\left[P\left(\underline{R}^{(k)}\right)^{-T} P\right]
$$

- This is a QR factorization of $A^{-k} P$, and the algorithm is equivalent to simultaneous iteration on A^{-1}
- In particular, the last column of $\underline{Q}^{(k)}$ evolves as in inverse iteration

The Shifted QR Algorithm

- Since the QR algorithm behaves like inverse iteration, introduce shifts $\mu^{(k)}$ to accelerate the convergence:

$$
\begin{aligned}
A^{(k-1)}-\mu^{(k)} I & =Q^{(k)} R^{(k)} \\
A^{(k)} & =R^{(k)} Q^{(k)}+\mu^{(k)} I
\end{aligned}
$$

- We then get (same as before):

$$
A^{(k)}=\left(Q^{(k)}\right)^{T} A^{(k-1)} Q^{(k)}=\left(\underline{Q}^{(k)}\right)^{T} A \underline{Q}^{(k)}
$$

and (different from before):

$$
\left(A-\mu^{(k)} I\right)\left(A-\mu^{(k-1)} I\right) \cdots\left(A-\mu^{(1)} I\right)=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

- Shifted simultaneous iteration - last column of $\underline{Q}^{(k)}$ converges quickly

Choosing $\mu^{(k)}$: The Rayleigh Quotient Shift

- Natural choice of $\mu^{(k)}$: Rayleigh quotient for last column of $\underline{Q}^{(k)}$

$$
\mu^{(k)}=\frac{\left(q_{m}^{(k)}\right)^{T} A q_{m}^{(k)}}{\left(q_{m}^{(k)}\right)^{T} q_{m}^{(k)}}=\left(q_{m}^{(k)}\right)^{T} A q_{m}^{(k)}
$$

- Rayleigh quotient iteration, last column $q_{m}^{(k)}$ converges cubically
- Convenient fact: This Rayleigh quotient appears as m, m entry of $A^{(k)}$ since $A^{(k)}=\left(\underline{Q}^{(k)}\right)^{T} A \underline{Q}^{(k)}$
- The Rayleigh quotient shift corresponds to setting $\mu^{(k)}=A_{m m}^{(k)}$

Choosing $\mu^{(k)}$: The Wilkinson Shift

- The QR algorithm with Rayleigh quotient shift might fail, e.g. with two symmetric eigenvalues
- Break symmetry by the Wilkinson shift

$$
\mu=a_{m}-\operatorname{sign}(\delta) b_{m-1}^{2} /\left(|\delta|+\sqrt{\delta^{2}+b_{m-1}^{2}}\right)
$$

where $\delta=\left(a_{m-1}-a_{m}\right) / 2$ and $B=\left[\begin{array}{cc}a_{m-1} & b_{m-1} \\ b_{m-1} & a_{m}\end{array}\right]$ is the lower-right submatrix of $A^{(k)}$

- Always convergence with this shift, in worst case quadratically

A Practical Shifted QR Algorithm

Algorithm: "Practical" QR Algorithm

$\left(Q^{(0)}\right)^{T} A^{(0)} Q^{(0)}=A \quad A^{(0)}$ is a tridiagonalization of A for $k=1,2, \ldots$

Pick a shift $\mu^{(k)}$
$Q^{(k)} R^{(k)}=A^{(k-1)}-\mu^{(k)} I \quad$ QR factorization of $A^{(k-1)}-\mu^{(k)} I$
$A^{(k)}=R^{(k)} Q^{(k)}+\mu^{(k)} I$
If any off-diagonal element $A_{j, j+1}^{(k)}$ is sufficiently close to zero,

$$
\text { set } A_{j, j+1}=A_{j+1, j}=0 \text { to obtain }
$$

$$
\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]=A^{(k)}
$$

and now apply the QR algorithm to A_{1} and A_{2}

Stability and Accuracy

- The QR algorithm is backward stable:

$$
\tilde{Q} \tilde{\Lambda} \tilde{Q}^{T}=A+\delta A, \quad \frac{\|\delta A\|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right)
$$

where $\tilde{\Lambda}$ is the computed Λ and \tilde{Q} is an exactly orthogonal matrix

- The combination with Hessenberg reduction is also backward stable
- Can be shown (for normal matrices) that $\left|\tilde{\lambda}_{j}-\lambda_{j}\right| \leq\|\delta A\|_{2}$, which gives

$$
\frac{\left|\tilde{\lambda}_{j}-\lambda_{j}\right|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right)
$$

where $\tilde{\lambda}_{j}$ are the computed eigenvalues

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

