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Floating Point Formats
 

• Scientific notation: 

−19 − 1.602 × 10 ���� � �� � ���� ���� 
sign significand	 base exponent 

•	 Floating point representation 

  
± d0 + d1β

−1 + . . . + dp−1β
−(p−1) βe , 0 ≤ di < β 

with base β and precision p 

•	 Exponent range [emin, emax] 

•	 Normalized if d0  = 0 (use e = emin − 1 to represent 0) 
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Floating Point Numbers
 

•	 The gaps between adjacent numbers scale with the size of the numbers 

• Relative resolution given by machine epsilon, ǫmachine = .5β1−p 

′� •	 For all x, there exists a floating point x such that |x − x ′�| ≤ ǫmachine|x| 

•	 Example: β = 2, p = 3, emin = −1, emax = 2 

0 1 2 3 4 5 6 7
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Special Quantities
 

•	 ±∞ is returned when an operation overflows 

•	 x/ ±∞ = 0 for any number x, x/0 = ±∞ for any nonzero number x 

•	 Operations with infinity are defined as limits, e.g. 

4 −∞ = lim 4 − x = −∞ 
x→∞� 

•	 NaN (Not a Number) is returned when the an operation has no 

well-defined finite or infinite result 

√ 
• Examples: ∞−∞, ∞/∞, 0/0, −1, NaN ⊙ x 
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Denormalized Numbers
 

•	 With normalized significand there is a “gap” between 0 and βemin 

•	 This can result in x − y = 0 even though x = y, and code fragments like 

if	 x = y then z = 1/(x − y) might break 

•	 Solution: Allow non-normalized significand when the exponent is emin 

•	 This gradual underflow garantees that 

x = y	 ⇐⇒ x − y = 0 

0 βemin βemin+1 βemin +2 βemin+3 

0 βemin βemin+1 βemin +2 βemin+3 
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IEEE Single Precision 

• 1 sign bit, 8 exponent bits, 23 significand bits: 

0 00000000 0000000000000000000000000000000 

S E M 

• Represented number: 

(−1)S × 1.M × 2E−127 

• Special cases: 

E = 0 0 < E < 255 E = 255 

M = 0 ±0 Powers of 2 ±∞ 
M = 0 Denormalized Ordinary numbers NaN 
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IEEE Single Precision, Examples
 

S E M Quantity 

0 11111111 00000100000000000000000 NaN 

1 11111111 00100010001001010101010 NaN 

0 11111111 00000000000000000000000 ∞ 
0 10000001 10100000000000000000000 2

129−127 
+1 · · 1.101 = 6.5 

0 10000000 00000000000000000000000 2
128−127 

+1 · · 1.0 = 2 

0 00000001 00000000000000000000000 2
1−127 

1.0 = 2−126 
+1 · · 

0 00000000 10000000000000000000000 2
−126 

0.1 = 2−127 
+1 · · 

0 00000000 00000000000000000000001 2
−126 

2
−23 

= 2−149 
+1 · · 

0 00000000 00000000000000000000000 0 

1 00000000 00000000000000000000000 −0 

1 10000001 10100000000000000000000 2
129−127 −1 · · 1.101 = −6.5 

1 11111111 00000000000000000000000 −∞ 
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IEEE Floating Point Data Types
 

Single precision Double precision 

Significand size (p) 24 bits 53 bits 

Exponent size 8 bits 11 

Total size 32 bits 64 bits 

emax +127 +1023 

emin -126 -1022 

Smallest normalized 2−126 ≈ 10−38 2−1022 ≈ 10−308 

Largest normalized 2127 ≈ 1038 21023 ≈ 10308 

ǫmachine 2−24 ≈ 6 · · · 10−8 2−53 ≈ 10−16 

8
 



 

  

  

 

 

Floating Point Arithmetic
 

• Define fl(x) as the closest floating point approximation to x 

• By the definition of ǫmachine, we have for the relative error: 

For all x ∈ R, there exists ǫ with |ǫ| ≤ ǫmachine 

such that fl(x) = x(1 + ǫ) 

• The result of an operation ⊛ using floating point numbers is fl(a ⊛ b) 

• If fl(a ⊛ b) is the nearest floating point number to a ⊛ b, the arithmetic 

rounds correctly (IEEE does), which leads to the following property: 

For all floating point x, y, there exists ǫ with |ǫ| ≤ ǫmachine such that 

x ⊛ y = (x ∗ y)(1 + ǫ) 

• Round to nearest even in the case of ties 
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