Lecture 2: Floating-Point Arithmetic, The IEEE Standard

MIT 18.335J / 6.337J Introduction to Numerical Methods

Per-Olof Persson

Floating Point Formats

• Scientific notation:

• Floating point representation

$$\pm \left(d_0 + d_1 \beta^{-1} + \ldots + d_{p-1} \beta^{-(p-1)} \right) \beta^e, \quad 0 \le d_i < \beta$$

with base β and precision p

- Exponent range $[e_{\min}, e_{\max}]$
- Normalized if $d_0 \neq 0$ (use $e = e_{\min} 1$ to represent 0)

Floating Point Numbers

- The gaps between adjacent numbers scale with the size of the numbers
- Relative resolution given by *machine epsilon*, $\epsilon_{\text{machine}} = .5\beta^{1-p}$
- For all x, there exists a floating point x' such that $|x x'| \le \epsilon_{\text{machine}} |x|$
- Example: $\beta = 2, p = 3, e_{\min} = -1, e_{\max} = 2$

Special Quantities

- $\pm\infty$ is returned when an operation overflows
- $x/\pm\infty=0$ for any number x, $x/0=\pm\infty$ for any nonzero number x
- Operations with infinity are defined as limits, e.g.

$$4 - \infty = \lim_{x \to \infty} 4 - x = -\infty$$

- NaN (Not a Number) is returned when the an operation has no well-defined finite or infinite result
- Examples: $\infty \infty$, ∞ / ∞ , 0/0, $\sqrt{-1}$, $\mathrm{NaN} \odot x$

Denormalized Numbers

- With normalized significand there is a "gap" between 0 and $\beta^{e_{\min}}$
- This can result in x y = 0 even though x = y, and code fragments like if x = y then z = 1/(x y) might break
- Solution: Allow non-normalized significand when the exponent is e_{\min}
- This gradual underflow garantees that

$$x = y \Longleftrightarrow x - y = 0$$

IEEE Single Precision

• 1 sign bit, 8 exponent bits, 23 significand bits:

0	00000000	000000000000000000000000000000000000000
S	E	Μ

• Represented number:

$$(-1)^S \times 1.M \times 2^{E-127}$$

• Special cases:

	E = 0	0 < E < 255	E = 255
M = 0	± 0	Powers of 2	$\pm\infty$
M = 0 Denormalized		Ordinary numbers	NaN

IEEE Single Precision, Examples

S	E	Μ	Quantity
0	11111111	00000100000000000000000	NaN
1	11111111	00100010001001010101010	NaN
0	11111111	000000000000000000000000000000000000000	∞
0	10000001	101000000000000000000000000000000000000	$+1 \cdot 2^{129-127} \cdot 1.101 = 6.5$
0	10000000	000000000000000000000000000000000000000	$+1 \cdot 2^{128 - 127} \cdot 1.0 = 2$
0	00000001	000000000000000000000000000000000000000	$+1 \cdot 2^{1-127} \cdot 1.0 = 2^{-126}$
0	00000000	100000000000000000000000000000000000000	$+1 \cdot 2^{-126} \cdot 0.1 = 2^{-127}$
0	00000000	000000000000000000000000000000000000000	$+1 \cdot 2^{-126} \cdot 2^{-23} = 2^{-149}$
0	00000000	000000000000000000000000000000000000000	0
1	00000000	000000000000000000000000000000000000000	-0
_1	10000001	101000000000000000000000000000000000000	$-1 \cdot 2^{129 - 127} \cdot 1.101 = -6.5$
1	11111111	000000000000000000000000000000000000000	$-\infty$

IEEE Floating Point Data Types

	Single precision	Double precision
Significand size (p)	24 bits	53 bits
Exponent size	8 bits	11
Total size	32 bits	64 bits
e_{\max}	+127	+1023
e_{\min}	-126	-1022
Smallest normalized	$2^{-126} \approx 10^{-38}$	$2^{-1022} \approx 10^{-308}$
Largest normalized	$2^{127} \approx 10^{38}$	$2^{1023} \approx 10^{308}$
$\epsilon_{ m machine}$	$2^{-24} \approx 6 \cdots 10^{-8}$	$2^{-53} \approx 10^{-16}$

Floating Point Arithmetic

- Define f(x) as the closest floating point approximation to x
- By the definition of $\epsilon_{machine}$, we have for the relative error:

For all $x \in \mathbb{R}$, there exists ϵ with $|\epsilon| \leq \epsilon_{\text{machine}}$ such that $fl(x) = x(1 + \epsilon)$

- The result of an operation \circledast using floating point numbers is $fl(a \circledast b)$
- If $fl(a \circledast b)$ is the nearest floating point number to $a \circledast b$, the arithmetic *rounds correctly* (IEEE does), which leads to the following property:

For all floating point x, y, there exists ϵ with $|\epsilon| \le \epsilon_{\text{machine}}$ such that $x \circledast y = (x \ast y)(1 + \epsilon)$

• Round to nearest even in the case of ties

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

18.335J Introduction to Numerical Methods Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.