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A lot of people solve differential 
equations every single day 
How has this gotten better, how has it stayed the same? 

2



 

        

   

        

  

     

 

Non-Stiff Equations 

• Non-stiff equations are generally thought to have been “solved” 

• Standard methods: Runge-Kutta and Adams-Bashforth-Moulton 

• ABM is implicit!!!!!!!! 
• Tradeoff: ABM minimizes function calls while RK maximizes steps. 

• In the end, Runge-Kutta seems to have “won” 

• Optimization of the leading truncation coefficients 

• PI(D)-adaptivity 

• High order (8th , 9th , 14th !) 
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 Simulating ODEs: RK4 

!" = $(&, !) )*+ ,-*. ! &/ 0-1 .ℎ0& &* $3-1 ! &/45 

&/45 = &/ + ℎ 

6+789: !/45 = !/ + ℎ$(&/, !/) 
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The Structure of a Runge-Kutta Method     
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4th Order Runge-Kuttas as Butcher Tableus 

“The Runge-Kutta Method” Runge’s 3/8’s method 
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Ways to Judge an RK Method 
Optimization of next order coefficients Stability 
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  Dormand-Prince 5th Order (1980) 
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Adaptivity 

• These Runge-Kutta methods have also been tuned for adaptive
stepsizes 
• Embedded methods use the same stages !" in order to get two solutions, #$ 

and %#$. 
• The difference is an error estimate: E' = 

)*+%)* 

,-./012 341/01 |)*| 
• If E' < 1, accept the step, otherwise reject the step 
• Change the timestep. There are many methods! 

• Simplest is akin to proportional control: Δ9$4: = 
;/
<* 

• PI-adaptivity brings in previous errors to smooth out the time steps 
• Changing Δ9 can decrease stability! 
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Dense Output 

• Dense (continuous) output can also be embedded into the numerical
method. 
• Simplest method: Hermite interpolation 
• !"#$ = 1 − ( !" + (!"#* + ((( − 1)( 1 − 2( !"#* − !" + 
( − 1 Δ/!"0 + (Δ/!"#*0 

• Only uses the values and derivatives at the endpoints! 
• But higher order interpolations can be developed using the 12 of the 

RK steps 
• Example: Tsit5 !"#$ = ∑2 4125 (() where (interpret t as () 
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RK methods are still being improved! 

• Optimizing coefficients can be done not just in general, but also to

applications 

• Recent methods, Tsit5 and Vern#, reduce the number of assumptions made in

coefficient optimization, leading to more optimal solutions (>2010) 

• Methods specialized for wave equations, low-dispersion results, extended

monotonicity equation for PDEs (SSPRK), etc. are hot topics in new high order 

Runge-Kutta methods 
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100x100 Linear ODEs 
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 Pleiades Problem 
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3-Body Problem (CVODE_Adams fails) 
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Minor improvements in 
DifferentialEquations.jl 
• FMA (fused multiply-add) 
• SIMD 
• fastmath on adaptivity parameters 
• Full inlining of user function 

But can we do more? 
• Parallelism is not well-exploited. 

15

https://DifferentialEquations.jl


   

          
    

     
  

      
       

 
          

         

3 forms of parallelism in diffeqs 

• Within-Method parallelism 
• Parallelize the operations within the method of a differential equation solver 

or within the derivative function f 
• Methods can be chosen to have more within-method parallelism 

• Parallelism in time 
• Parallelize across time, then relax to a solution 

• May be hard to converge! May not be efficient! 

• Parameter Parallelism 
• If people are solving the same system thousands of times with different initial 

conditions and parameters, this is a good level to parallelize at! 
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Pervasive Allowance of Within-Method 
parallelism through Julia 
• Julia’s broadcast system allows an array type to define its actions 
• If an array chooses to parallelize its elementwise (broadcasted)

operations), they will be broadcasted 
• If an entire solver is written to never index and always broadcast, 

then all internal operations will be the user-defined actions 
• Result: full parallelism in the ODE solver 

• GPU-based arrays stay on the GPU 
• Distributed arrays stay distributed 
• Multithreaded arrays will auto-multithread the operations of the method 
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Example of a Broadcast-Based Internal 

Zero GPU/Distributed message passing done by the solver! 
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Pros/Cons of “Array-Based Parallelism” 

• Pros: 
• It’s a style that’s already used a lot 

• Big PDE simulations, climate simulations 
• Dead simple to get nearly 100% efficient (in Julia!) 

• Cons: 
• Only efficient for LARGE ODE systems 

19



    
 

What about changing the 
method for more within-method 
parallelism? 
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Parallel Runge-Kutta methods 

5 stages 
But only 3 steps in parallel 
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 Multithreading Extrapolation 
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  Parareal Algorithms – Parallel in Time 
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Parameter Parallelism 

• Naïve: Take the ODE solver and run it in parallel many times 
• This is fairly efficient! 

• Next level: compile the ODE solver to a GPU kernel, and then call that
GPU kernel on an array of parameters 
• Thousands of ODE solves per computer! 
• Limiting factor: memory 

24



 
   

  
           

Intermediate Conclusion: 
That’s just non-stiff ODEs (and 
not even all of it) 
Even with non-stiff methods, we have already improved a lot over the older Fortran
methods. And there’s still a lot more that we can do. 
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Stiff ODEs: Fall of the BDF 
What’s coming to get GEAR’s method. 
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 Backwards Differentiation Formulae 
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Evolution of Gear’s Method 

• GEAR: Original code. Adaptive order adaptive time via interpolation 
• Lowers the stability! 

• LSODE series: update of GEAR 
• Adds rootfinding, Krylov, etc 

• VODE: Variable-coefficient form 
• No interpolation necessary. 

• CVODE: VODE rewritten in C++ 
• Adds sensitivity analysis 
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Problems with BDF 
BDF is a multistep method 

Needs “Startup Steps” 

Inefficient with events 

It is only L-stable up to 2nd order 

Has high truncation error coefficients 

Implicit 

Requires good step predictors 
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But in 2019, what can we exploit? 
Sparse factorizations, Krylov exponential linear algebra, IMEX, Approximate
Factorization, ETC. 
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Orego Benchmarks 
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Rosenbrock Methods 
Aren’t new! (ode23s) 

Can fix a lot of problems: 
Exploit sparse factorization 
No step predictions required 
Can optimize coefficients to high 

order 

Con: Needs accurate Jacobians 
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Automatic Differentiation in a nutshell 

• Numerical differentiation is numerically bad because you’re dividing by a
small number. Can this be avoided? 
• Early idea: instead of using a real-valued difference, when ! is real-valued 

but complex analytic, use the following identity: 

# ≈ ℑ 
! # + 'ℎ 

ℎ 
!" . 

• Claim: the numerical stability of this algorithm matches that of ! 

• Automatic differentiation then scales this idea to multiple dimensions 
• One implementation: use Dual numbers x = , + -. where ./ = 0 (smooth 

infinitesimal arithmetic). Define ! # = ! , + !" , -. (chain rule). 

34



           
            

       
       
        

    
   

       
   

Differentiable Programming 

• Claim: if you recompiled your entire program to do Dual arithmetic, then
the output of your program is a Dual number which computes both the
original value and derivative simultaneously (to machine accuracy). 

• As described, this is known as operator overloading forward-mode 
automatic differentiation (AD). There are also computational graph and
AST-based AD implementations. In addition, there are “adjoint” or 
reverse-mode automatic differentiation which specifically produce 
gradients of cost functions with better scaling properties 

• “Backpropogation” of neural networks is simple reverse-mode AD on
some neural network program. 
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Differentiable Programming in Julia 

• I have defined this implementation of automatic differentiation as “the way
you would change every arithmetic operation of a program if you wanted
to calculate the derivative. 
• The differential equation solvers and PuMaS are all implemented as generic

algorithms in Julia which are generic with respect to the Number and
AbstractArray types that are used 
• ForwardDiff.jl defines a Dual number type for forward-mode automatic

differentiation, Flux.jl defines a Tracker number type for reverse-mode
automatic differentiation. 
• If you put these into these simulation tools, a new algorithm is

automatically generated that propagates the solution and its derivatives
through every step of the code. 
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Side note: this same technology let’s us fuse 
with neural networs 
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ODE Problems can fall into different classes 

Physical Modeling 
SecondOrderODEProblem(f,u0,tspan,p) 

• !"" = $(!, ', ()
PartitionedODEProblem(f1,f2,v0,u0,tsp
an,p) 

• *" = $+((, !)
• !′ = $-(*)

HamiltonianODEProblem(H,p0,q0,tspan
,p) 

PDE Discretizations 

SplitODEProblem(f1,f2,u0,tspan,p) (IMEX) 

• !" = $+ !, ', ( + $-(!, ', ()
SemilinearODEProblem(A,f2,u0,tspan,p) 

• !" = 1! + $(!, ', ()
LocalSemilinearODEProblem(A,f2,u0,tspan,
p) 

!" = 1! + $. (!, ', () 
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Exponential Runge-Kutta 
Explicit methods for stiff equations 

Small enough: Build matrix 
exponential 

Large enough: Krylov exp(t*A)*v 
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Non-stiff and Stiff ODEs are far 
from solved if you really need the 
performance. 
Plenty of methods were not mentioned here that are showing promise in research
and in the DifferentialEquations.jl software 
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https://DifferentialEquations.jl


     Putting it together for users: polyalgorithms 
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Conclusion 

• Today you can solve ODEs 
• Tomorrow you will likely be able to solve them much faster 
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Want a paid summer position? Want a 
paid part time position as a PuMaS/DiffEq 
developer? 

• Contact me for Google Summer of Code or PuMaS
development. No Julia experience is required for GSoC. 
Julia experience is required for PuMaS. 

• https://julialang.org/soc/ideas-page 
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