18.335 Problem Set 4

Problem 1: Almost GMRES

We use the Arnoldi method to build up an orthogonal basis Q_{n} for \mathscr{K}_{n}, with $A Q_{n}=Q_{n} H_{n}+h_{n+1, n} q_{n+1} e_{n}^{*}=$ $Q_{n+1} \tilde{H}_{n}$. GMRES then finds an approximate solution to $A x=b$ by minimizing $\|A x-b\|_{2}$ for all $x \in \mathscr{K}_{n}$, giving an $(n+1) \times n$ least-square problem involving the matrix \tilde{H}_{n}.

Suppose that we instead find an approximate solution to $A x=b$ by finding an $x \in \mathscr{K}_{n}$ where $b-A x$ is $\perp \mathscr{K}_{n}$. Derive a small ($n \times n$ or similar) system of equations that you can solve to find the approximate solution x of this method.

Problem 2: Power method

Suppose A is a diagonalizable matrix with eigenvectors \mathbf{v}_{k} and eigenvalues λ_{k}, in decreasing order $\left|\lambda_{1}\right| \geq$ $\left|\lambda_{2}\right| \geq \cdots$. Recall that the power method starts with a random \mathbf{x} and repeatedly computes $\mathbf{x} \leftarrow A \mathbf{x} /\|A \mathbf{x}\|_{2}$.
(a) Suppose $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|>\left|\lambda_{3}\right|$, but $\lambda_{1} \neq \lambda_{2}$. Explain why the power method will not in general converge.
(b) Give a way obtain λ_{1} and λ_{2} and \mathbf{v}_{1} and \mathbf{v}_{2} from the power method by simply keeping track of the previous iteration's vector in addition to the current iteration.

Problem 3: Shifted-inverse iteration

Trefethen, problem 27.5.

Problem 4: Arnoldi

Trefethen, problem 33.2.

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

