18.335 Problem Set 4

Problem 1: Almost GMRES

We use the Arnoldi method to build up an orthogonal basis Q_n for \mathscr{K}_n , with $AQ_n = Q_nH_n + h_{n+1,n}q_{n+1}e_n^* = Q_{n+1}\tilde{H}_n$. GMRES then finds an approximate solution to Ax = b by minimizing $||Ax - b||_2$ for all $x \in \mathscr{K}_n$, giving an $(n+1) \times n$ least-square problem involving the matrix \tilde{H}_n .

Suppose that we **instead** find an approximate solution to Ax = b by finding an $x \in \mathcal{K}_n$ where b - Ax is $\perp \mathcal{K}_n$. Derive a small $(n \times n \text{ or similar})$ system of equations that you can solve to find the approximate solution *x* of this method.

Problem 2: Power method

Suppose *A* is a diagonalizable matrix with eigenvectors \mathbf{v}_k and eigenvalues λ_k , in decreasing order $|\lambda_1| \ge |\lambda_2| \ge \cdots$. Recall that the power method starts with a random \mathbf{x} and repeatedly computes $\mathbf{x} \leftarrow A\mathbf{x}/||A\mathbf{x}||_2$.

- (a) Suppose |λ₁| = |λ₂| > |λ₃|, but λ₁ ≠ λ₂. Explain why the power method will not in general converge.
- (b) Give a way obtain λ₁ and λ₂ and v₁ and v₂ from the power method by simply keeping track of the *previous* iteration's vector in addition to the current iteration.

Problem 3: Shifted-inverse iteration

Trefethen, problem 27.5.

Problem 4: Arnoldi

Trefethen, problem 33.2.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

18.335J Introduction to Numerical Methods Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.