

18.335 Problem Set 1

You should sub-mit your problem set
electronically on the 18.335 Stellar page.
Submit both a scan of any handwritten
solutions (I recommend an app like TinyScanner
or similar to create a good-quality black-and-
white “thresholded” scan) and also a PDF
printout of the Julia notebook of your com-puter
solutions. A template Julia notebook is
posted in the 18.335 web site to help you get
started.

Problem 1: Floating point

Trefethen, probem 13.2. (For part c, you can
use Julia, which employs IEEE double preci-
sion by default. However, unlike Matlab, Julia
distinguishes between integer and floating-point
scalars. For example, 2^50 in Julia will produce
a 64-bit integer result; to get a 64-bit/double
floating-point result, do e.g. 2.0^50 instead.)

Problem 2: Funny functions

(a) Write a function L4(x,y) in Julia to com-
pute the L4 norm (|x|4 + |y|4)1/4 of two
scalars x and y. Does your code give
an accurate answer for L4(1e-100,0.0)?
What about L4(1e+100,0.0)? Without us-
ing arbitrary-precision (BigFloat) calcula-
tions, fix your code so that it gives an an-

|computed−correct| swer whose relative error is |correct|
within a small multiple of eps() = �machine

(a few “ulps”, or “units in the last place”) of
the exactly rounded answer for all double-
precision x and y. (You can test your code
by comparing to L4(big(x),big(y)), i.e.
arbitrary-precision calculation.)

(b) Write a function cotdiff(x,y) that com-
putes cot(x) − cot(x + y). Does your code
give an accurate answer for cotdiff(1.0,
1e-20)? Without using arbitrary-precision
(BigFloat) calculations, fix your code so
that it gives an accurate Float64 answer
(within a few ulps) even when |y| � |x|
(without hurting the accuracy when y and x
are comparable!). (Hint: one option would
be to switch over to Taylor expansion when
|y|/|x| is suÿciently small, but a simpler so-
lution is possible by applying some trigono-
metric identities.)

Problem 3: Newtonish methods

Newton’s method for a root of f(x) = 0 is to
iterate xn+1 = xn − f(xn)/f

0(xn) starting from
some initial guess x1 (which must be suÿciently
close to the root to guarantee convergence in gen-
eral). Suppose that you are also given f 00(x), the
second derivative. In this problem, you will pro-
pose an iteration scheme that takes advantage of
this second-derivative information.

(a) Propose a Newton-like iteration that takes
advantage of f , f 0 , and f 00 (assuming f is
analytic in the neighborhood of the root).
(Hint: use a second-order Taylor approxi-
mation of f .) If you solve a quadratic equa-

2 tion ax + bx + c = 0, you might want to √
−b− b2−4ac compute the two roots as and 2a

2c √ , assuming b > 0, to avoid dis-−b− b2 −4ac

astrous cancellation errors for |ac| � b2 .
(Google “quadratic formula cancellation er-
ror.” In the event of a disaster, your method
can fall back to an ordinary Newton step.)

(b) Analyze its asymptotic convergence rate: if
x is an exact root, write xn = x(1 + δn)
as in class, and solve for δn+1 in terms of δn

assuming you are close to the root (δn � 1).

(c) Modify the Julia Newton’s-method note-
book from class to implement your method
to compute a root of f(x) = x3 − 1. In
particular start with x1 = 2, so that your
scheme should(!) converge to x = 1, and
look at the error xn − 1. Demonstrate that
it agrees with your predicted convergence
rate from the previous part. [You should
use arbitrary precision as in the notebook
from class, so that you can watch the con-
vergence rate for many digits. An approxi-
mate number of accurate digits is given by
− log10(xn − 1).]

Problem 4: Addition, another way Pn Here you will analyze f(x) = i=1 xi, but you
will compute f̃(x) in a di˙erent way from the
naive sum considered in class. In particular,
compute f̃(x) by a recursive divide-and-conquer
approach, recursively dividing the set of values
to be summed in two halves and then summing

1

the halves: ⎧ ⎪0 if n = 0 ⎨
f̃(x) = x1 if n = 1 , ⎪⎩

f̃(x1:bn/2c) ⊕ f̃(xbn/2c+1:n) if n > 1

where byc denotes the greatest integer ≤ y (i.e.
y rounded down). In exact arithmetic, this com-
putes f(x) exactly, but in floating-point arith-
metic this will have very di˙erent error charac-
teristics than the simple loop-based summation
in class.

(a) For simplicity, assume n is a power of 2
(so that the set of numbers to add di-
vides evenly in two at each stage of the
recursion). Prove that |f̃(x) − f(x)| ≤ Pn
�machine log2(n) i=1 |xi| + O(�machine

2).
That is, show that the worst-case error
bound grows logarithmically rather than lin-
early with n!

(b) Pete R. Stunt, a Microsoft employee, com-
plains, “While doing this kind of recursion
may have nice error characteristics in the-
ory, it is ridiculous in the real world be-
cause it will be insanely slow—I’m proud
of my eÿcient software and can’t a˙ord
to have a function-call overhead for every
number I want to add!” Explain to Pete
how to implement a slight variation of this
algorithm with the same logarithmic error
bounds (possibly with a worse constant fac-
tor) but roughly the same performance as a
simple loop.

(c) In the pset 1 Julia notebook, there
is a function “div2sum” that computes
f̃(x) =div2sum(x) in single precision by the
above algorithm. Modify it to not be hor-
rendously slow via your suggestion in (b),
and then plot its errors for random inputs
as a function of n with the help of the exam-
ple code in the Julia notebook (but with a
larger range of lengths n). Are your results
consistent with your error bounds above?

2

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page

