
   
      

      
       

       
      

       
        

      
          

   
        

      
       

     
        

        
     

   

18.335 Problem Set 1 

You should sub-mit your problem set 
electronically on the 18.335 Stellar page. 
Submit both a scan of any handwritten 
solutions (I recommend an app like TinyScanner 
or similar to create a good-quality black-and-
white “thresholded” scan) and also a PDF 
printout of the Julia notebook of your com-puter 
solutions. A template Julia notebook is 
posted in the 18.335 web site to help you get 
started. 

Problem 1: Floating point 

Trefethen, probem 13.2. (For part c, you can 
use Julia, which employs IEEE double preci-
sion by default. However, unlike Matlab, Julia 
distinguishes between integer and floating-point 
scalars. For example, 2^50 in Julia will produce 
a 64-bit integer result; to get a 64-bit/double 
floating-point result, do e.g. 2.0^50 instead.) 

Problem 2: Funny functions 

(a) Write a function L4(x,y) in Julia to com-
pute the L4 norm (|x|4 + |y|4)1/4 of two 
scalars x and y. Does your code give 
an accurate answer for L4(1e-100,0.0)? 
What about L4(1e+100,0.0)? Without us-
ing arbitrary-precision (BigFloat) calcula-
tions, fix your code so that it gives an an-

|computed−correct| swer whose relative error is |correct| 
within a small multiple of eps() = �machine 

(a few “ulps”, or “units in the last place”) of 
the exactly rounded answer for all double-
precision x and y. (You can test your code 
by comparing to L4(big(x),big(y)), i.e. 
arbitrary-precision calculation.) 

(b) Write a function cotdiff(x,y) that com-
putes cot(x) − cot(x + y). Does your code 
give an accurate answer for cotdiff(1.0, 
1e-20)? Without using arbitrary-precision 
(BigFloat) calculations, fix your code so 
that it gives an accurate Float64 answer 
(within a few ulps) even when |y| � |x| 
(without hurting the accuracy when y and x 
are comparable!). (Hint: one option would 
be to switch over to Taylor expansion when 
|y|/|x| is suÿciently small, but a simpler so-
lution is possible by applying some trigono-
metric identities.) 

Problem 3: Newtonish methods 

Newton’s method for a root of f(x) = 0 is to 
iterate xn+1 = xn − f(xn)/f

0(xn) starting from 
some initial guess x1 (which must be suÿciently 
close to the root to guarantee convergence in gen-
eral). Suppose that you are also given f 00(x), the 
second derivative. In this problem, you will pro-
pose an iteration scheme that takes advantage of 
this second-derivative information. 

(a) Propose a Newton-like iteration that takes 
advantage of f , f 0 , and f 00 (assuming f is 
analytic in the neighborhood of the root). 
(Hint: use a second-order Taylor approxi-
mation of f .) If you solve a quadratic equa-

2 tion ax + bx + c = 0, you might want to √ 
−b− b2−4ac compute the two roots as and 2a 

2c √ , assuming b > 0, to avoid dis-−b− b2 −4ac 

astrous cancellation errors for |ac| � b2 . 
(Google “quadratic formula cancellation er-
ror.” In the event of a disaster, your method 
can fall back to an ordinary Newton step.) 

(b) Analyze its asymptotic convergence rate: if 
x is an exact root, write xn = x(1 + δn) 
as in class, and solve for δn+1 in terms of δn 

assuming you are close to the root (δn � 1). 

(c) Modify the Julia Newton’s-method note-
book from class to implement your method 
to compute a root of f(x) = x3 − 1. In 
particular start with x1 = 2, so that your 
scheme should(!) converge to x = 1, and 
look at the error xn − 1. Demonstrate that 
it agrees with your predicted convergence 
rate from the previous part. [You should 
use arbitrary precision as in the notebook 
from class, so that you can watch the con-
vergence rate for many digits. An approxi-
mate number of accurate digits is given by 
− log10(xn − 1).] 

Problem 4: Addition, another way Pn Here you will analyze f(x) = i=1 xi, but you 
will compute f̃(x) in a di˙erent way from the 
naive sum considered in class. In particular, 
compute f̃(x) by a recursive divide-and-conquer 
approach, recursively dividing the set of values 
to be summed in two halves and then summing 
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the halves: ⎧ ⎪0 if n = 0 ⎨ 
f̃(x) = x1 if n = 1 , ⎪⎩

f̃(x1:bn/2c) ⊕ f̃(xbn/2c+1:n) if n > 1 

where byc denotes the greatest integer ≤ y (i.e. 
y rounded down). In exact arithmetic, this com-
putes f(x) exactly, but in floating-point arith-
metic this will have very di˙erent error charac-
teristics than the simple loop-based summation 
in class. 

(a) For simplicity, assume n is a power of 2 
(so that the set of numbers to add di-
vides evenly in two at each stage of the 
recursion). Prove that |f̃(x) − f(x)| ≤ Pn 
�machine log2(n) i=1 |xi| + O(�machine 

2 ). 
That is, show that the worst-case error 
bound grows logarithmically rather than lin-
early with n! 

(b) Pete R. Stunt, a Microsoft employee, com-
plains, “While doing this kind of recursion 
may have nice error characteristics in the-
ory, it is ridiculous in the real world be-
cause it will be insanely slow—I’m proud 
of my eÿcient software and can’t a˙ord 
to have a function-call overhead for every 
number I want to add!” Explain to Pete 
how to implement a slight variation of this 
algorithm with the same logarithmic error 
bounds (possibly with a worse constant fac-
tor) but roughly the same performance as a 
simple loop. 

(c) In the pset 1 Julia notebook, there 
is a function “div2sum” that computes 
f̃(x) =div2sum(x) in single precision by the 
above algorithm. Modify it to not be hor-
rendously slow via your suggestion in (b), 
and then plot its errors for random inputs 
as a function of n with the help of the exam-
ple code in the Julia notebook (but with a 
larger range of lengths n). Are your results 
consistent with your error bounds above? 
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