Some myths about floating-point arithmetic

Steven G. Johnson

September 13, 2013
(This list is adapted from the "prevalent misconceptions about floating-point arithmetic" by William Kahan's 2004 presentation "How Java's Floating-Point Hurts Everyone Everywhere.")

As in Trefethen's book, we denote floating point operations by \oplus, \otimes, \ldots. We denote the set of floating-point numbers by \mathbb{F}, and $\mathrm{fl}(x)$ denotes the closest element of \mathbb{F} to $x \in \mathbb{R}$. Assuming x does not overflow or underflow (exceed the max/min exponent), two key facts are that $|\mathrm{fl}(x)-x| \leq \epsilon|x|$, where ϵ is the machine precision, and that (assuming IEEE "correct rounding") $x \quad y=\mathrm{fl}(x \cdot y)$ for binary operations $\cdot \in\{\times, \pm, /\}$. The other key fact is to understand that \mathbb{F} is a specific set of rational numbers: p-digit integers multiplied by powers of two (in binary floating-point) or powers of 10 (in decimal floating point).

A number of pernicious myths about floating-point arithmetic are prevalent. They include:

- A unpredictable random number of order ϵ is added to every result. e.g. $1 \oplus 1$ may give $2 \pm \epsilon$, and $0 \otimes x$ may give $\pm \epsilon$. False. (e.g. $1 \oplus 1$ always gives exactly 2 , and $0 \otimes x$ always gives exactly 0 [unless x is $\pm \operatorname{Inf}$ or NaN], since 2 and 0 are exactly representable.)
- Integer arithmetic is more accurate than floating-point arithmetic. False. (See above: integer arithmetic is performed exactly in floating-point.)
- Integer arithmetic is much faster than floating-point arithmetic. False on any modern generalpurpose CPU. (True in 1985, or on small embedded systems.)
- Computational precision (the number of digits stored) is the same thing as the computational accuracy. False. (Numbers can be much more accurate than the number of digits stored, e.g. integers are stored exactly, or much less accurate, e.g. due to error accumulation.)
- "Arithmetic much more precise than the data it operates upon is needless, and wasteful." (Kahan) False: even if you only need 3 significant digits in the final result, you may need many more digits at intermediate steps.
- Floating-point arithmetic performs "random" rounding of decimal fractions, e.g. 0.1 or 3.1415. True for binary floating-point, but False for decimal floating-point (available in many software libraries).
- "In floating-point arithmetic nothing is ever exactly 0 ; but if it is, no useful purpose is served by distinguishing +0 from -0 ." (Kahan) False.
- "Progress is inevitable: When better formulas are found, they supplant the worse." (Kahan) Sadly, False.

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

