Notes on the accuracy of naive summation

S. G. Johnson, MIT Course 18.335

February 8, 2019

1 Naive summation

In these notes, we analyze the floating-point error involved in summing n numbers, i.e. in computing the function $f(x)=\sum_{i=1}^{n} x_{i}$ for $x \in \mathbb{F}^{n}$ (\mathbb{F} being the set of floating-point numbers), where the sum is done in the most obvious way, in sequence. In pseudocode:

```
sum = 0
for i = 1 to n
    sum = sum + xi
f(x) = sum
```

A much more complete analysis of summation can be found in Higham (1993) [1]. Perhaps confusingly, this naive algorithm is called "recursive" summation, in reference to the inductive version of the definition below, although most computer programs would implement this with a loop (with the exception of Lisp programmers using tail recursion).

For analysis, it is a bit more convenient to define the process inductively:

$$
\begin{aligned}
& s_{0}=0 \\
& s_{k}=s_{k-1}+x_{k} \text { for } 0<k \leq n
\end{aligned}
$$

with $f(x)=s_{n}$. (The intermediate values s_{k} are known as "partial" sums.) When we implement this in floating-point arithmetic, we get the function $\tilde{f}(x)=\tilde{s}_{n}$, where $\tilde{s}_{k}=\tilde{s}_{k-1} \oplus x_{k}$, with \oplus denoting (correctly rounded) floating-point addition.

2 An upper bound on the error

We can easily prove an upper bound on the errors accumulated by the floating-point implementation of this algorithm:

$$
|\tilde{f}(x)-f(x)| \leq n \epsilon_{\text {machine }} \sum_{i=1}^{n}\left|x_{i}\right|+O\left(\epsilon_{\text {machine }}^{2}\right)
$$

This means that the relative error in the sum is bounded above by

$$
\frac{|\tilde{f}(x)-f(x)|}{|f(x)|} \leq n O\left(\epsilon_{\text {machine }}\right)\left[\frac{\sum_{i=1}^{n}\left|x_{i}\right|}{\left|\sum_{i=1}^{n} x_{i}\right|}\right]
$$

The $[\cdots]$ factor is what we will eventually call the condition number of the summation problem, a term that we we will define precisely later in 18.335 . In the special case of summing nonnegative values $x_{i} \geq 0$, the $[\cdots]$ term is $=1$, and we find that the relative error grows at worse linearly with the problem size n.

To prove this, we first prove the lemma:

$$
\tilde{f}(x)=\sum_{i=1}^{n} x_{i} \prod_{k=i}^{n}\left(1+\epsilon_{k}\right)
$$

where $\epsilon_{1}=0$ and the other ϵ_{k} satisfy $\left|\epsilon_{k}\right| \leq \epsilon_{\text {machine }}$, by induction on n.

- For $n=1$, it is trivial with $\epsilon_{1}=0$.
- Now for the inductive step. Suppose $\tilde{s}_{n-1}=\sum_{i=1}^{n-1} x_{i} \prod_{k=i}^{n-1}\left(1+\epsilon_{k}\right)$. Then $\tilde{s}_{n}=\tilde{s}_{n-1} \oplus x_{n}=$ $\left(\tilde{s}_{n-1}+x_{n}\right)\left(1+\epsilon_{n}\right)$ where $\left|\epsilon_{n}\right|<\epsilon_{\text {machine }}$ is guaranteed by floating-point addition. The result follows by inspection: the previous terms are all multiplied by $\left(1+\epsilon_{n}\right)$, and we add a new term $x_{n}\left(1+\epsilon_{n}\right)$.

Now, let us multiply out the terms:

$$
\left(1+\epsilon_{i}\right) \cdots\left(1+\epsilon_{n}\right)=1+\sum_{k=i}^{n} \epsilon_{k}+(\text { products of } \epsilon)=1+\delta_{i}
$$

where the products of ϵ_{k} terms are $O\left(\epsilon_{\text {machine }}^{2}\right)$, and hence

$$
\left|\delta_{i}\right| \leq \sum_{k=i}^{n}\left|\epsilon_{k}\right|+O\left(\epsilon_{\text {machine }}^{2}\right) \leq n \epsilon_{\text {machine }}+O\left(\epsilon_{\text {machine }}^{2}\right)
$$

Now we have: $\tilde{f}(x)=f(x)+\left(x_{1}+x_{2}\right) \delta_{2}+\sum_{i=3}^{n} x_{i} \delta_{i}$, and hence (by the triangle inequality):

$$
|\tilde{f}(x)-f(x)| \leq\left|x_{1}\right|\left|\delta_{2}\right|+\sum_{i=2}^{n}\left|x_{i}\right|\left|\delta_{i}\right|
$$

Hence $|\tilde{f}(x)-f(x)| \leq n \epsilon_{\text {machine }} \sum_{i=1}^{n}\left|x_{i}\right|$ from the $\left|\delta_{i}\right|$ bound above.
Note: This does not correspond to a proof of forwards stability (defined soon in 18.335), since we have only shown that $|\tilde{f}(x)-f(x)|=\|x\| O\left(\epsilon_{\text {machine }}\right)$, which is different from $|\tilde{f}(x)-f(x)|=$ $|f(x)| O\left(\epsilon_{\text {machine }}\right)$ unless all the x_{i} are ≥ 0 ! Note that our $O\left(\epsilon_{\text {machine }}\right)$ is uniformly convergent in x, however (that is, the coefficient of $\epsilon_{\text {machine }}$ is independent of x, although it depends on n).

3 Average errors

In fact, the analysis above is typically too pessimistic, because the individual errors ϵ_{k} are typically of different signs, and in particular can usually be though of as random numbers, because the last few digits of typical inputs x_{i} are usually random noise. For uniform random ϵ_{k}, since δ_{i} is the sum of $(n-i+1)$ random variables with variance $\sim \epsilon_{\text {machine }}$, it follows from the usual properties of random walks that the mean $\left|\delta_{i}\right|$ has magnitude $\sim \sqrt{n-i+1} O\left(\epsilon_{\text {machine }}\right) \leq \sqrt{n} O\left(\epsilon_{\text {machine }}\right)$. Hence we typically expect

$$
\text { root mean square }|\tilde{f}(x)-f(x)|=O\left(\sqrt{n} \epsilon_{\text {machine }} \sum_{i=1}^{n}\left|x_{i}\right|\right)
$$

i.e. rms errors that grow $\sim \sqrt{n}$.

This sounds good, but in fact there are summation algorithms that do much better. The algorithm for Julia's built-in sum function, for example, is pairwise summation, which has $O(\log n)$ worst-case and $O(\sqrt{\log n})$ average-case errors [1], while having about the same performance as naive summation.

References

[1] Nicholas J. Higham, "The accuracy of floating point summation," SIAM Journal on Scientific Computing 14, pp. 783-799 (1993).

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

