Notes on the accuracy of naive summation

S. G. Johnson, MIT Course 18.335
February 8, 2019

1 Naive summation

In these notes, we analyze the floating-point error involved in summing n numbers, i.e. in computing
the function f(z) = Y"1, z; for x € F" (F being the set of floating-point numbers), where the sum
is done in the most obvious way, in sequence. In pseudocode:

sum = 0

for i =1 ton
sum = sum + I

f(z) = sum

A much more complete analysis of summation can be found in Higham (1993) [1]. Perhaps con-
fusingly, this naive algorithm is called “recursive” summation, in reference to the inductive version
of the definition below, although most computer programs would implement this with a loop (with
the exception of Lisp programmers using tail recursion).

For analysis, it is a bit more convenient to define the process inductively:

So = 0

Sk = Sp_1+xpfor 0 <k <n,

with f(z) = sp. (The intermediate values s; are known as “partial” sums.) When we implement
this in floating-point arithmetic, we get the function f(z) = §,, where 3, = §,_1 ® zy, with &
denoting (correctly rounded) floating-point addition.

2 An upper bound on the error

We can easily prove an upper bound on the errors accumulated by the floating-point implementation
of this algorithm:

|f(z) — f(z)] < "€machine Z || + O(E?nachine)'
i=1

This means that the relative error in the sum is bounded above by

ORI >
@) = "Olmachine) [E?_l xid |

The [- -] factor is what we will eventually call the condition number of the summation problem,
a term that we we will define precisely later in 18.335. In the special case of summing nonnegative
values x; > 0, the [---] term is = 1, and we find that the relative error grows at worse linearly
with the problem size n.
To prove this, we first prove the lemma:
n

fl)=>a [+e),
k=1

i=1

where €; = 0 and the other ¢ satisfy |ex| < e by induction on n.

machine’

e For n =1, it is trivial with ¢; = 0.

e Now for the inductive step. Suppose 5,1 = Z?;ll x; Z;:(l +¢€x). Then 3, = 5,1 ® x, =

(8n-1 + 2n)(1 + €,) where |e,| < € achine 15 guaranteed by floating-point addition. The
result follows by inspection: the previous terms are all multiplied by (1 + ¢,), and we add a
new term x, (1 + €,).

Now, let us multiply out the terms:

(I4+€) - (1+e,)= 1+Zek+(products of) =1+,
k=i

€2

where the products of ¢ terms are O(machine

), and hence

n
2 2
|6:] < Z ler] + Oepachine) < ™emachine T O(Emachine)-
=i

Now we have: f(z) = f(z) + (z1 4 22)d2 + > s x;0;, and hence (by the triangle inequality):

[f(2) = f(@)] < [a]162] +) |l [64].

=2

Hence |f(z) — f(z)] < N€machine 2orei |%i| from the |6;| bound above.

Note: This does not correspond to a proof of forwards stability (defined soon in 18.335), since
we have only shown that |f(z) — f(z)| = 12| O(emachine)> Which is different from |f(x) = flz)| =
|f(2)[O(€nachine) unless all the x; are > 0! Note that our O(ep,chine) 18 uniformly convergent
in x, however (that is, the coefficient of €pachine is independent of x, although it depends on n).

3 Average errors

In fact, the analysis above is typically too pessimistic, because the individual errors € are typically
of different signs, and in particular can usually be though of as random numbers, because the last
few digits of typical inputs x; are usually random noise. For uniform random ¢, since ¢; is the sum
of (n — i+ 1) random variables with variance ~ €. }hine, it follows from the usual properties of
random walks that the mean |;| has magnitude ~ vn — i+ 10(epachine) < VPO (€machine)-
Hence we typically expect

root mean square |f(z) — f(z)] = O (ﬁemachine Z a:l|> ,

i=1

i.e. rms errors that grow ~ /n.

This sounds good, but in fact there are summation algorithms that do much better. The algo-
rithm for Julia’s built-in sum function, for example, is pairwise summation, which has O(logn)
worst-case and O(/logn) average-case errors [1], while having about the same performance as naive
summation.

References

[1] Nicholas J. Higham, “The accuracy of floating point summation,” SIAM Journal on Scientific
Computing 14, pp. 783-799 (1993).

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

