
Notes on the accuracy of naive summation

S. G. Johnson, MIT Course 18.335

February 8, 2019

1 Naive summation
In these notes, we analyze the floating-point error involved in summing n numbers, i.e. in computing
the function f(x) =

∑n
i=1 xi for x ∈ Fn (F being the set of floating-point numbers), where the sum

is done in the most obvious way, in sequence. In pseudocode:

sum = 0
for i = 1 to n

sum = sum + xi
f(x) = sum

A much more complete analysis of summation can be found in Higham (1993) [1]. Perhaps con-
fusingly, this naive algorithm is called “recursive” summation, in reference to the inductive version
of the definition below, although most computer programs would implement this with a loop (with
the exception of Lisp programmers using tail recursion).

For analysis, it is a bit more convenient to define the process inductively:

s0 = 0

sk = sk−1 + xk for 0 < k ≤ n,

with f(x) = sn. (The intermediate values sk are known as “partial” sums.) When we implement
this in floating-point arithmetic, we get the function f̃(x) = s̃n, where s̃k = s̃k−1 ⊕ xk, with ⊕
denoting (correctly rounded) floating-point addition.

2 An upper bound on the error
We can easily prove an upper bound on the errors accumulated by the floating-point implementation
of this algorithm:

|f̃(x)− f(x)| ≤ nεmachine

n∑
i=1

|xi|+O(ε2machine).

This means that the relative error in the sum is bounded above by

|f̃(x)− f(x)|
|f(x)|

≤ nO(εmachine)
[∑n

i=1 |xi|
|
∑n

i=1 xi|

]
.

The [· · ·] factor is what we will eventually call the condition number of the summation problem,
a term that we we will define precisely later in 18.335. In the special case of summing nonnegative
values xi ≥ 0, the [· · ·] term is = 1, and we find that the relative error grows at worse linearly
with the problem size n.

To prove this, we first prove the lemma:

f̃(x) =
n∑

i=1

xi

n∏
k=i

(1 + εk),

where ε1 = 0 and the other εk satisfy |εk| ≤ εmachine, by induction on n.

1

• For n = 1, it is trivial with ε1 = 0.

• Now for the inductive step. Suppose s̃n−1 =
∑n−1

i=1 xi
∏n−1

k=i (1 + εk). Then s̃n = s̃n−1 ⊕ xn =
(s̃n−1 + xn)(1 + εn) where |εn| < εmachine is guaranteed by floating-point addition. The
result follows by inspection: the previous terms are all multiplied by (1 + εn), and we add a
new term xn(1 + εn).

Now, let us multiply out the terms:

(1 + εi) · · · (1 + εn) = 1 +
n∑

k=i

εk + (products of ε) = 1 + δi,

where the products of εk terms are O(ε2machine), and hence

|δi| ≤
n∑

k=i

|εk|+O(ε2machine) ≤ nεmachine +O(ε2machine).

Now we have: f̃(x) = f(x) + (x1 + x2)δ2 +
∑n

i=3 xiδi, and hence (by the triangle inequality):

|f̃(x)− f(x)| ≤ |x1| |δ2|+
n∑

i=2

|xi| |δi|.

Hence |f̃(x)− f(x)| ≤ nεmachine
∑n

i=1 |xi| from the |δi| bound above.
Note: This does not correspond to a proof of forwards stability (defined soon in 18.335), since

we have only shown that |f̃(x)− f(x)| = ‖x‖O(εmachine), which is different from |f̃(x)− f(x)| =
|f(x)|O(εmachine) unless all the xi are ≥ 0! Note that our O(εmachine) is uniformly convergent
in x, however (that is, the coefficient of εmachine is independent of x, although it depends on n).

3 Average errors
In fact, the analysis above is typically too pessimistic, because the individual errors εk are typically
of different signs, and in particular can usually be though of as random numbers, because the last
few digits of typical inputs xi are usually random noise. For uniform random εk, since δi is the sum
of (n − i + 1) random variables with variance ∼ εmachine, it follows from the usual properties of
random walks that the mean |δi| has magnitude ∼

√
n− i+ 1O(εmachine) ≤

√
nO(εmachine).

Hence we typically expect

root mean square |f̃(x)− f(x)| = O

(
√
nεmachine

n∑
i=1

|xi|

)
,

i.e. rms errors that grow ∼
√
n.

This sounds good, but in fact there are summation algorithms that do much better. The algo-
rithm for Julia’s built-in sum function, for example, is pairwise summation, which has O(log n)
worst-case and O(

√
log n) average-case errors [1], while having about the same performance as naive

summation.

References
[1] Nicholas J. Higham, “The accuracy of floating point summation,” SIAM Journal on Scientific

Computing 14, pp. 783–799 (1993).

2

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

