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Consider the summation function f(x) =
∑n
i=1 xi for vectors x ∈ Fn (n

floating-point numbers). (The case of real inputs rounded to F just increases
the error coefficient slightly, and is handled below.) We wish to demonstrate
the backwards stability of the function f̃(x) which computes the summation “in
order” in floating-point arithmetic (⊕), that is:

f̃(x) = ((x1 ⊕ x2)⊕ x3)⊕ · · · ),

which can be defined via the recursion:

s̃1 = x1,

s̃i = s̃i−1 ⊕ xi,
f̃(x) = s̃n,

and this arrangement is sometimes called “recursive summation” (independent
of whether it is implemented via recursion or a loop in a computer language;
the key is the order of the operations).

To be backwards stable, we must find a vector x̃ such that f̃(x) = f(x̃), and
also x̃ is “close” to x in the sense that ‖x̃ − x‖ = ‖x̃‖O(εmach) in some norm
‖ · ‖. We do this in two steps. First, we construct x̃ such that f̃(x) = f(x̃), and
then we show that it is close to x.

To construct x̃ is easy. We define x̃1 = x1, and then define x̃i for i > 1 such
that s̃i = s̃i−1 ⊕ xi = s̃i−1 + x̃i. It follows by induction that s̃i =

∑i
k=1 x̃i, and

hence f̃(x) = s̃n = f(x̃) as desired. That is:

x̃i = s̃i−1 ⊕ xi − s̃i−1 = (s̃i−1 + xi) · (1 + εi)− s̃i−1
where |εi| ≤ εmach, by definition of ⊕.

Now, we need to show that ‖x̃−x‖ is “small” in the sense above. As we shall
shortly see in 18.335, it turns out that we can choose any norm that we wish
for proving stability (stability in one norm implies stability in every norm), and
in this problem it is convenient to choose the L1 norm ‖x‖1 =

∑n
i=1 |xi|. First,

consider |x̃i − xi|, using the formula above for x̃i:

|x̃i − xi| = |xi + s̃i−1| · |εi| =

∣∣∣∣∣xi +
i−1∑
k=1

x̃k

∣∣∣∣∣ · |εi|
≤ (|xi|+ ‖x̃‖1) · |εi|,
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where we have used the fact that s̃i−1, by construction, is equal to the exact
sum of the x̃k for k < i, which in turn is ≤ the L1 norm of x̃. It now follows
that

‖x̃− x‖1 ≤
n∑
i=1

(|xi|+ ‖x̃‖1) · |εi| ≤

[(
n∑
i=1

|xi|

)
+ n‖x̃‖1

]
max
i
|εi|

= ‖x‖1O(εmach) + ‖x̃‖1O(εmach),

where the second O(εmach) has a factor of n in its coefficient. (This doesn’t
matter: we only require that the constants hidden inside the O be independent
of x, not of n.) But we can easily convert ‖x‖ to ‖x̃‖ (or vice versa) since x
and x̃ are close. In particular, by the triangle inequality, ‖x‖ = ‖x̃+ (x− x̃)‖ ≤
‖x̃‖+ ‖x̃− x‖ for any norm, and substituting this into the equation above and
solving for ‖x̃− x‖1 we find:

‖x̃− x‖1 =
‖x̃‖1O(εmach)

1−O(εmach)
= ‖x̃‖1O(εmach),

since (as you show more explicitly in pset 2) we can Taylor expand 1
1−O(ε) =

1 +O(ε) +O(ε2) for small ε.

Regarding ‖x‖ versus ‖x̃‖ in the denominator
Note that this last point means that it doesn’t matter whether we use ‖x‖ or ‖x̃‖
on the right-hand side (or in the denominator) for the definition of backwards
stability (or stability), since by the same argument one can show:

‖x̃− x‖ = ‖x̃‖O(εmach)⇐⇒ ‖x̃− x‖ = ‖x‖O(εmach)

in any norm.

Regarding inputs in R versus F
In the beginning, we assumed that x was in Fn, i.e. that the inputs are already
floating point numbers. This was merely a convenience, and almost the same
proof applies if x is in Rn and we first compute fl(x) (rounding x to the nearest
floating-point values) before summing. The reason is that, for any xi ∈ R
(neglecting the cases of overflow or underflow as usual), fl(xi) = xi(1 + ε′i) for
|ε′i| ≤ εmach, and so it follows that

s̃i−1⊕fl(xi) = [s̃i−1 + xi(1 + ε′i)] (1+εi) = (s̃i−1+xi)(1+εi)+xiε
′
i+O(εmach

2),

where |εi| ≤ εmach. However, if we plug the new xiε
′
i term into the above

proof, it just gives another ‖x‖1O(εmach) term in ‖x̃ − x‖1, which doesn’t
change anything.
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