18.335 Midterm, Fall 2012

Problem 1: (25 points)

(a) Your friend Alyssa P. Hacker claims that the function $f(x)=\sin x$ can be computed accurately (small forward relative error) near $x=0$, but not near $x=2 \pi$, despite the fact that the function is periodic in exact arithmetic. True or false? Why?
(b) Matlab provides a function $\log 1 \mathrm{p}(\mathrm{x})$ that computes $\ln (1+x)$. What is the point of providing such a function, as opposed to just letting the user compute $\ln (1+x)$ herself? (Hint: not performance.) Outline a possible implementation of $\log 1 \mathrm{p}(\mathrm{x})$ [rough pseudocode is fine].
(c) Matlab provides a function gamma (x) that computes the "Gamma" function $\Gamma(x)=$ $\int_{0}^{\infty} e^{-t} t^{x-1} d t$, which is a generalization of factorials, since $\Gamma(n+1)=n$!. Matlab also provides a function gammaln(x) that computes $\ln [\Gamma(x)]$. What is the point of providing a separate gammaln function? (Hint: not performance.)

Problem 2: (5+10+10 points)

Recall that a floating-point implementation $\tilde{f}(x)$ of a function $f(x)$ (between two normed vector spaces) is said to be backwards stable if, for every x, there exists some \tilde{x} such that $\tilde{f}(x)=f(\tilde{x})$ for $\|\tilde{x}-x\|=$ $\|x\| O\left(\varepsilon_{\text {machine }}\right)$. Consider how you would apply this definition to a function $f(x, y)$ of two arguments x and y. Two possibilities are:

- First: The most direct application of the original definition would be to define a single vector space on pairs $v=(x, y)$ in the obvious way $\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right.$ and $\alpha \cdot(x, y)=(\alpha x, \alpha y)]$, with some norm $\|(x, y)\|$ on pairs. Then \tilde{f} is backwards stable if for every (x, y) there exist (\tilde{x}, \tilde{y}) with $\tilde{f}(x, y)=f(\tilde{x}, \tilde{y})$ and $\|(\tilde{x}, \tilde{y})-(x, y)\|=\|(x, y)\| O\left(\varepsilon_{\text {machine }}\right)$.
- Second: Alternatively, we could say \tilde{f} is backwards stable if for every x, y there exist \tilde{x}, \tilde{y} with $\tilde{f}(x, y)=f(\tilde{x}, \tilde{y})$ and $\|\tilde{x}-x\|=\|x\| O\left(\varepsilon_{\text {machine }}\right)$ and $\|\tilde{y}-y\|=\|y\| O\left(\varepsilon_{\text {machine }}\right)$.
(a) Given norms $\|x\|$ and $\|y\|$ on x and y, give an example of a valid norm $\|(x, y)\|$ on the vector space of pairs (x, y).
(b) Does First \Longrightarrow Second, or Second \Longrightarrow First, or both, or neither? Why?
(c) In class, we proved that summation of n floating-point numbers, in some sequential order, is backwards stable. Suppose we sum $m+n$ floating point numbers $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$ by $\tilde{f}(x, y)=x_{1} \oplus x_{2} \oplus x_{3} \oplus \cdots \oplus x_{m} \oplus y_{1} \oplus y_{2} \oplus$ $\cdots \oplus y_{n}$, doing the floating-point additions (\oplus) sequentially from left to right. Is this backwards stable in the First sense? In the Second sense? (No complicated proof required, but give a brief justification if true and a counterexample if false.)

Problem 3: (25 points)

Say A is an $m \times m$ diagonalizable matrix with eigenvectors $x_{1}, x_{2}, \ldots, x_{m}$ (normalized to $\left\|x_{k}\right\|_{2}=1$ for convenience) and distinct-magnitude eigenvalues λ_{k} such that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{m}\right|$. In class, we showed that n steps of the QR algorithm produce a matrix $A_{n}=Q^{(n) *} A Q^{(n)}$ where $Q^{(n)}$ is equivalent (in exact arithmetic) to QR factorizing $A^{n}=Q^{(n)} R^{(n)}$. This proof was general for all A. For the specific case of $A=A^{*}$ where the eigenvectors are orthonormal, we concluded that as $n \rightarrow \infty$ we obtain $Q^{(n)} \rightarrow$ eigenvectors $\left(x_{1} \cdots x_{m}\right)$ and $A_{n} \rightarrow \Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.

Show that if $A \neq A^{*}$ (so that the eigenvectors x_{k} are no longer in generally orthogonal), the QR algorithm approaches $A_{n} \rightarrow T$ and $Q^{(n)} \rightarrow Q$ where $T=Q^{*} A Q$ is the Schur factorization of A. (Hint: show that $q_{k}=Q^{(n)} e_{k}$, the k-th column of $Q^{(n)}$, is in the span $\left\langle x_{1}, x_{2}, \ldots, x_{k}\right\rangle$ as $n \rightarrow \infty$, by considering $v_{k}=A^{n} e_{k}$, the k-th column of A^{n}. Similar to class, think about the power method $A^{n} e_{k}$, and what GramSchmidt does to this.)

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

