

A Brief Overview
of Optimization Problems

Steven G. Johnson
MIT course 18.335, Spring 2019

1

Why optimization?
• In some sense, all engineering design is

optimization: choosing design parameters to
improve some objective

• Much of data analysis is also optimization:
extracting some model parameters from data while
minimizing some error measure (e.g. fitting)

• Most business decisions = optimization: varying
some decision parameters to maximize profit (e.g.
investment portfolios, supply chains, etc.)

2

A general optimization problem

minimize an objective function f0 min with respect to n design parameters x
(also called decision parameters, optimization variables, etc.) $∈ℝ'

()(+)
— note that maximizing g(x)

corresponds to f0 (x) = –g(x) subject to m constraints

note that an equality constraint (- + ≤ 0 h(x) = 0
yields two inequality constraints

fi(x) = h(x) and fi+1(x) = –h(x)
(although, in practical algorithms, equality constraints

typically require special handling) x is a feasible point if it
satisfies all the constraints

feasible region = set of all feasible x
3

Important considerations

• Global versus local optimization
• Convex vs. non-convex optimization
• Unconstrained or box-constrained optimization, and

other special-case constraints
• Special classes of functions (linear, etc.)
• Differentiable vs. non-differentiable functions
• Gradient-based vs. derivative-free algorithms
• …
• Zillions of different algorithms, usually restricted to

various special cases, each with strengths/weaknesses

4

Global vs. Local Optimization
• For general nonlinear functions, most algorithms only

guarantee a local optimum
– that is, a feasible xo such that f0(xo) ≤ f0(x) for all feasible x

within some neighborhood ||x–xo|| < R (for some small R)
• A much harder problem is to find a global optimum: the

minimum of f0 for all feasible x
– exponentially increasing difficulty with increasing n, practically

impossible to guarantee that you have found global minimum
without knowing some special property of f0

– many available algorithms, problem-dependent efficiencies
• not just genetic algorithms or simulated annealing (which are popular,

easy to implement, and thought-provoking, but usually very slow!)
• for example, non-random systematic search algorithms (e.g. DIRECT),

partially randomized searches (e.g. CRS2), repeated local searches from
different starting points (“multistart” algorithms, e.g. MLSL), …

5

Convex Optimization

[good reference: Convex Optimization by Boyd and Vandenberghe,
free online at www.stanford.edu/~boyd/cvxbook]

All the functions fi (i=0…m) are convex:
where

f(x)

af(x) + bf(y)

f(ax+by)

convex: f(x) not convex:

x y x y

For a convex problem (convex objective & constraints)
any local optimum must be a global optimum

Þ efficient, robust solution methods available
6

www.stanford.edu/~boyd/cvxbook

Important Convex Problems

• LP (linear programming): the objective and
constraints are affine: fi(x) = aiTx + ai

• QP (quadratic programming): affine constraints +
convexquadratic objective xTAx+bTx

• SOCP (second-order cone program): LP + cone
constraints ||Ax+b||2 ≤ aTx + a

• SDP (semidefinite programming): constraints are that
SAkxk is positive-semidefinite

all of these have very efficient, specialized solution methods

7

Important special constraints
• Simplest case is the unconstrained optimization

problem: m=0
– e.g., line-search methods like steepest-descent,

nonlinear conjugate gradients, Newton methods …
• Next-simplest are box constraints (also called

bound constraints): xk
min ≤ xk ≤ xk

max

– easily incorporated into line-search methods and many
other algorithms

– many algorithms/software only handle box constraints
• …
• Linear equality constraints Ax=b

– for example, can be explicitly eliminated from the
problem by writing x=Ny+x, where x is a solution to
Ax=b and N is a basis for the nullspace of A

8

Derivatives of fi
• Most-efficient algorithms typically require user to

supply the gradients Ñxfi of objective/constraints
– you should always compute these analytically

• rather than use finite-difference approximations, better to just
use a derivative-free optimization algorithm

• in principle, one can always compute Ñxfi with about the same
cost as fi, using adjoint methods

– gradient-based methods can find (local) optima of
problems with millions of design parameters

• Derivative-free methods: only require fi values
– easier to use, can work with complicated “black-box”

functions where computing gradients is inconvenient
– may be only possibility for nondifferentiable problems
– need > n function evaluations, bad for large n

9

! eblaintereffdi

Removable non-differentiability
consider the non-differentiable unconstrained problem:

min |) + | * $∈ℝ'

equivalent to minimax problem:
min max{) + , −)*(+)} * $∈ℝ'

…still nondifferentiable…

f0(x)
–f0(x)

…equivalent to constrained problem with a “temporary” variable t:

optimum

i.e.)7 +, 5 =)* + − 5 5 ≥)*(+) min 5 $∈ℝ',4∈ℝ
subject to:)9 +, 5 = −) + − 5 * 5 ≥ −)*(+)

10

x

Example: Chebyshev linear fitting

a

b

N points
(ai,bi)

fit line
ax1+x2 find the fit that minimizes

the maximum error:

… nondifferentiable minimax problem

equivalent to a linear programming problem (LP):

subject to 2N constraints:

min$%,$'
max* +, -* + +/ − 1*

= min
$∈ℝ'

5+ − 1 6

min$%,$',7
8 8 ≥ +, -* + +/ − 1*

8 ≥ −+, -* − +/ + 1* 8 ≥ +, -* + +/ − 1*
equivalently:

11

Relaxations of Integer Programming
If x is integer-valued rather than real-valued (e.g. x Î {0,1}n),
the resulting integer programming or combinatorial optimization
problem becomes much harder in general.

However, useful results can often be obtained by a continuous
relaxation of the problem — e.g., going from x Î {0,1}n to x Î [0,1]n

… at the very least, this gives an lower bound on the optimum f0

“Penalty terms” or “projection filters” (SIMP, RAMP, etc.)
can be used to obtain x that ≈ 0 or ≈ 1 almost everywhere.

[See e.g. Sigmund & Maute, “Topology optimization approaches,” Struct.
Multidisc. Opt. 48, pp. 1031–1055 (2013).]

12

Example: Topology Optimization
design a structure to do something, made of material A or B…

let every pixel of discretized structure vary continuously from A to B
[+ tricks to impose minimum feature size and mostly “binary” A/B]

density of each pixel
varies continuously from 0 (air) to max

ex: design a cantilever
to support maximum weight
with a fixed amount of material

13

force

optimized structure,
deformed under load

© Springer Nature Switzerland AG. All rights reserved.
This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/
help/faq-fair-use.

[Buhl et al, Struct. Multidisc. Optim. 19, 93–104 (2000)]

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Stochastic Optimization
where ([⋯] is
expected value min$∈ℝ'

()(+, -) averaging over
random vars -

Deep-learning example:
Fitting (“learning”) to a huge “training set”
by sampling a random subset -:

) +, - = ∑5∈6)5 +

∇$) often exists, but typically can’t use standard
gradient-descent because of randomness.

A popular algorithm: Adam [Kingma & Ba, 2014]
“stochastic gradient descent”

14

Some Sources of Software
• NLopt: implements many nonlinear optimization algorithms

callable from many languages (C, Python, R, Matlab, …)
(global/local, constrained/unconstrained, derivative/no-derivative)

http://github.com/stevengj/nlopt

• Python: scipy.optimize, pyOpt, …; Julia: JuMP, Optim,…

• Decision tree for optimization software:
http://plato.asu.edu/guide.html

— lists many (somewhat older) packages for many problems

• CVX: general convex-optimization package http://cvxr.com
… also Python CVXOPT, R CVXR, Julia Convex

15

http://github.com/stevengj/nlopt
http://plato.asu.edu/guide.html
http://cvxr.com/
http://cvxr.com
http://plato.asu.edu/guide.html
http://github.com/stevengj/nlopt

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover2.pdf
	Blank Page

