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Why optimization? 
• In some sense, all engineering design is 

optimization: choosing design parameters to 
improve some objective 

• Much of data analysis is also optimization: 
extracting some model parameters from data while 
minimizing some error measure (e.g. fitting) 

• Most business decisions = optimization: varying 
some decision parameters to maximize profit (e.g.
investment portfolios, supply chains, etc.) 
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A general optimization problem 

minimize an objective function f0 min with respect to n design parameters x 
(also called decision parameters, optimization variables, etc.) $∈ℝ' 

()(+) 
— note that maximizing g(x) 

corresponds to f0 (x) = –g(x) subject to m constraints 

note that an equality constraint (- + ≤ 0 h(x) = 0 
yields two inequality constraints

fi(x) = h(x) and fi+1(x) = –h(x)
(although, in practical algorithms, equality constraints

typically require special handling) x is a feasible point if it 
satisfies all the constraints 

feasible region = set of all feasible x 
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Important considerations 

• Global versus local optimization 
• Convex vs. non-convex optimization 
• Unconstrained or box-constrained optimization, and 

other special-case constraints 
• Special classes of functions (linear, etc.) 
• Differentiable vs. non-differentiable functions 
• Gradient-based vs. derivative-free algorithms 
• … 
• Zillions of different algorithms, usually restricted to 

various special cases, each with strengths/weaknesses 
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Global vs. Local Optimization 
• For general nonlinear functions, most algorithms only 

guarantee a local optimum 
– that is, a feasible xo such that f0(xo) ≤ f0(x) for all feasible x 

within some neighborhood ||x–xo|| < R (for some small R) 
• A much harder problem is to find a global optimum: the 

minimum of f0 for all feasible x 
– exponentially increasing difficulty with increasing n, practically 

impossible to guarantee that you have found global minimum
without knowing some special property of f0 

– many available algorithms, problem-dependent efficiencies
• not just genetic algorithms or simulated annealing (which are popular,

easy to implement, and thought-provoking, but usually very slow!) 
• for example, non-random systematic search algorithms (e.g. DIRECT),

partially randomized searches (e.g. CRS2), repeated local searches from
different starting points (“multistart” algorithms, e.g. MLSL), … 
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Convex Optimization

[ good reference: Convex Optimization by Boyd and Vandenberghe, 
free online at www.stanford.edu/~boyd/cvxbook ] 

All the functions fi (i=0…m) are convex: 
where 

f(x) 

af(x) + bf(y) 

f(ax+by) 

convex: f(x) not convex: 

x y x y 

For a convex problem (convex objective & constraints) 
any local optimum must be a global optimum 

Þ efficient, robust solution methods available 
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Important Convex Problems 

• LP (linear programming): the objective and 
constraints are affine: fi(x) = aiTx + ai 

• QP (quadratic programming): affine constraints +
convexquadratic objective xTAx+bTx 

• SOCP (second-order cone program): LP + cone 
constraints ||Ax+b||2 ≤ aTx + a 

• SDP (semidefinite programming): constraints are that 
SAkxk is positive-semidefinite 

all of these have very efficient, specialized solution methods 
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Important special constraints 
• Simplest case is the unconstrained optimization 

problem: m=0 
– e.g., line-search methods like steepest-descent,

nonlinear conjugate gradients, Newton methods … 
• Next-simplest are box constraints (also called 

bound constraints): xk
min ≤ xk ≤ xk

max 

– easily incorporated into line-search methods and many
other algorithms 

– many algorithms/software only handle box constraints 
• … 
• Linear equality constraints Ax=b 

– for example, can be explicitly eliminated from the
problem by writing x=Ny+x, where x is a solution to 
Ax=b and N is a basis for the nullspace of A 

8



 
     

 

    
  

          
    

    
   

  
        

     
   
     

Derivatives of fi 
• Most-efficient algorithms typically require user to 

supply the gradients Ñxfi of objective/constraints 
– you should always compute these analytically 

• rather than use finite-difference approximations, better to just
use a derivative-free optimization algorithm 

• in principle, one can always compute Ñxfi with about the same 
cost as fi, using adjoint methods 

– gradient-based methods can find (local) optima of
problems with millions of design parameters 

• Derivative-free methods: only require fi values 
– easier to use, can work with complicated “black-box”

functions where computing gradients is inconvenient 
– may be only possibility for nondifferentiable problems 
– need > n function evaluations, bad for large n 
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Removable non-differentiability 
consider the non-differentiable unconstrained problem: 

min |) + | * $∈ℝ' 

equivalent to minimax problem: 
min max{) + , −)*(+)} * $∈ℝ' 

…still nondifferentiable… 

f0(x) 
–f0(x) 

…equivalent to constrained problem with a “temporary” variable t: 

optimum 

i.e. )7 +, 5 = )* + − 5 5 ≥ )*(+) min 5 $∈ℝ',4∈ℝ 
subject to: )9 +, 5 = −) + − 5 * 5 ≥ −)*(+) 
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Example: Chebyshev linear fitting 

a 

b 

N points 
(ai,bi) 

fit line 
ax1+x2 find the fit that minimizes 

the maximum error: 

… nondifferentiable minimax problem 

equivalent to a linear programming problem (LP): 

subject to 2N constraints: 

min$%,$' 
max* +, -* + +/ − 1* 

= min
$∈ℝ' 

5+ − 1 6 

min$%,$',7 
8 8 ≥ +, -* + +/ − 1* 

8 ≥ −+, -* − +/ + 1* 8 ≥ +, -* + +/ − 1* 
equivalently: 
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Relaxations of Integer Programming 
If x is integer-valued rather than real-valued (e.g. x Î {0,1}n), 
the resulting integer programming or combinatorial optimization 
problem becomes much harder in general. 

However, useful results can often be obtained by a continuous 
relaxation of the problem — e.g., going from x Î {0,1}n to x Î [0,1]n 

… at the very least, this gives an lower bound on the optimum f0 

“Penalty terms” or “projection filters” (SIMP, RAMP, etc.) 
can be used to obtain x that ≈ 0 or ≈ 1 almost everywhere. 

[ See e.g. Sigmund & Maute, “Topology optimization approaches,” Struct. 
Multidisc. Opt. 48, pp. 1031–1055 (2013). ] 
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Example: Topology Optimization 
design a structure to do something, made of material A or B… 

let every pixel of discretized structure vary continuously from A to B 
[ + tricks to impose minimum feature size and mostly “binary” A/B ] 

        
     

  
  

    

 
   

         

 

 

  

density of each pixel
varies continuously from 0 (air) to max 

ex: design a cantilever
to support maximum weight
with a fixed amount of material 
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optimized structure,
deformed under load 
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[ Buhl et al, Struct. Multidisc. Optim. 19, 93–104 (2000) ] 
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Stochastic Optimization 
where ([⋯ ] is 
expected value min$∈ℝ' 

( )(+, -) averaging over
random vars -

Deep-learning example:
Fitting (“learning”) to a huge “training set” 
by sampling a random subset -: 

) +, - = ∑5∈6 )5 + 

∇$) often exists, but typically can’t use standard 
gradient-descent because of randomness. 

A popular algorithm: Adam [Kingma & Ba, 2014]
“stochastic gradient descent” 
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Some Sources of Software 
• NLopt: implements many nonlinear optimization algorithms

callable from many languages (C, Python, R, Matlab, …) 
(global/local, constrained/unconstrained, derivative/no-derivative)

http://github.com/stevengj/nlopt 

• Python: scipy.optimize, pyOpt, …; Julia: JuMP, Optim,… 

• Decision tree for optimization software:
http://plato.asu.edu/guide.html 

— lists many (somewhat older) packages for many problems 

• CVX: general convex-optimization package http://cvxr.com 
… also Python CVXOPT, R CVXR, Julia Convex 
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