A Brief Overview of Optimization Problems

Steven G. Johnson MIT course 18.335, Spring 2019

Why optimization?

- In some sense, *all engineering design* is optimization: choosing design parameters to improve some objective
- Much of *data analysis* is also optimization: extracting some model parameters from data while minimizing some error measure (e.g. fitting)
- Most *business decisions* = optimization: varying some *decision parameters* to maximize profit (e.g. investment portfolios, supply chains, etc.)

A general optimization problem

 $\min_{x\in\mathbb{R}^n}f_0(x)$

subject to *m* constraints

 $f_i(x) \le 0$

i = 1, 2, . . . , *m*

x is a *feasible point* if it satisfies all the constraints *feasible region* = set of all feasible x_{3}

minimize an objective function f_0 with respect to *n* design parameters *x* (also called *decision parameters, optimization variables*, etc.)

> - note that *maximizing* g(x)corresponds to $f_0(x) = -g(x)$

note that an *equality constraint* h(x) = 0yields two inequality constraints $f_i(x) = h(x)$ and $f_{i+1}(x) = -h(x)$ (although, in practical algorithms, equality constraints typically require special handling)

Important considerations

- *Global* versus *local* optimization
- *Convex* vs. non-convex optimization
- Unconstrained or box-constrained optimization, and other special-case constraints
- Special classes of functions (linear, etc.)
- Differentiable vs. non-differentiable functions
- Gradient-based vs. derivative-free algorithms
- •
- Zillions of different algorithms, usually restricted to various special cases, each with strengths/weaknesses

Global vs. Local Optimization

- For *general nonlinear* functions, *most* algorithms only guarantee a local optimum
 - that is, a feasible x_0 such that $f_0(x_0) \le f_0(x)$ for all feasible x within some neighborhood $||x-x_0|| < R$ (for some small R)
- A *much harder* problem is to find a global optimum: the minimum of f_0 for *all* feasible *x*
 - exponentially increasing difficulty with increasing n, practically impossible to *guarantee* that you have found global minimum without knowing some special property of f_0
 - many available algorithms, problem-dependent efficiencies
 - *not* just genetic algorithms or simulated annealing (which are popular, easy to implement, and thought-provoking, but usually *very slow*!)
 - for example, non-random systematic search algorithms (e.g. DIRECT), partially randomized searches (e.g. CRS2), repeated local searches from different starting points ("multistart" algorithms, e.g. MLSL), ...

Convex Optimization

[good reference: *Convex Optimization* by Boyd and Vandenberghe, free online at <u>www.stanford.edu/~boyd/cvxbook</u>]

All the functions f_i (*i*=0...*m*) are *convex*:

 $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y) \text{ where } \begin{aligned} \alpha + \beta = 1 \\ \alpha, \beta \in [0, 1] \end{aligned}$

For a convex problem (convex objective & constraints) *any* local optimum *must* be a global optimum ⇒ efficient, robust solution methods available

Important Convex Problems

- LP (linear programming): the objective and constraints are *affine*: $f_i(x) = a_i^T x + \alpha_i$
- QP (quadratic programming): affine constraints + convexquadratic objective $x^{T}Ax+b^{T}x$
- SOCP (second-order cone program): LP + *cone* constraints $||Ax+b||_2 \le a^Tx + \alpha$
- SDP (semidefinite programming): constraints are that $\Sigma A_k x_k$ is positive-semidefinite

all of these have very efficient, specialized solution methods

Important special constraints

- Simplest case is the *unconstrained* optimization problem: *m*=0
 - e.g., line-search methods like steepest-descent, nonlinear conjugate gradients, Newton methods ...
- Next-simplest are *box constraints* (also called *bound constraints*): $x_k^{\min} \le x_k \le x_k^{\max}$
 - easily incorporated into line-search methods and many other algorithms
 - many algorithms/software *only* handle box constraints
- . . .
- Linear equality constraints *Ax=b*
 - for example, can be explicitly eliminated from the problem by writing $x=Ny+\xi$, where ξ is a solution to $A\xi=b$ and *N* is a basis for the nullspace of *A*

Derivatives of f_i

- Most-efficient algorithms typically require user to supply the gradients $\nabla_x f_i$ of objective/constraints
 - you should *always* compute these analytically
 - rather than use finite-difference approximations, better to just use a derivative-free optimization algorithm
 - in principle, one can always compute $\nabla_x f_i$ with about the same cost as f_i , using adjoint methods
 - gradient-based methods can find (local) optima of problems with millions of design parameters
- Derivative-free methods: only require f_i values
 - easier to use, can work with complicated "black-box" functions where computing gradients is inconvenient
 - *may* be only possibility for nondifferentiable problems
 - need > n function evaluations, bad for large n

Removable non-differentiability

consider the *non*-differentiable *unconstrained* problem:

$$\min_{x \in \mathbb{R}^{n}} |f_{0}(x)|$$
equivalent to *minimax* problem:

$$\min_{x \in \mathbb{R}^{n}} (\max\{f_{0}(x), -f_{0}(x)\})$$
...still nondifferentiable...

...equivalent to *constrained* problem with a "temporary" variable *t*:

$$\underset{x \in \mathbb{R}^{n}, t \in \mathbb{R}}{\operatorname{min}} t \quad \text{subject to:} \quad \begin{array}{l} t \geq f_{0}(x) \\ t \geq -f_{0}(x) \end{array} \quad \begin{array}{l} \text{i.e. } f_{1}(x,t) = f_{0}(x) - t \\ f_{2}(x,t) = -f_{0}(x) - t \end{array}$$

Example: Chebyshev linear fitting

find the fit that minimizes the *maximum error*:

$$\min_{x_1, x_2} \left(\max_i |x_1 a_i + x_2 - b_i| \right)$$
$$= \min_{x \in \mathbb{R}^2} ||Ax - b||_{\infty}$$

... nondifferentiable minimax problem

equivalent to a *linear programming* problem (LP):

subject to 2/V constraints:

$$\begin{array}{ll}
\text{min } t \\ x_1, x_2, t \\ t \geq -x_1 a_i - x_2 + b_i \\ t \geq -x_1 a_i - x_2 + b_i \end{array} \quad \begin{array}{ll}
\text{equivalently:} \\ t \geq |x_1 a_i + x_2 - b_i| \\ t \geq |x_1 a_i + x_2 - b_i| \\ \end{array}$$

A N T

Relaxations of Integer Programming

If *x* is integer-valued rather than real-valued (e.g. $x \in \{0,1\}^n$), the resulting *integer programming* or *combinatorial optimization* problem becomes *much harder* in general.

However, useful results can often be obtained by a *continuous relaxation* of the problem — e.g., going from $x \in \{0,1\}^n$ to $x \in [0,1]^n$... at the very least, this gives an lower bound on the optimum f_0

"Penalty terms" or "projection filters" (SIMP, RAMP, etc.) can be used to obtain *x* that ≈ 0 or ≈ 1 almost everywhere.

[See e.g. Sigmund & Maute, "Topology optimization approaches," *Struct*. *Multidisc*. *Opt*. **48**, pp. 1031–1055 (2013).]

Example: Topology Optimization

design a structure to do something, made of material A or B... let *every pixel* of discretized structure vary *continuously* from A to B

[+ tricks to impose minimum feature size and mostly "binary" A/B]

ex: design a cantilever to support maximum weight with a fixed amount of material

optimized structure, deformed under load

© Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/</u> <u>help/faq-fair-use</u>.

Stochastic Optimization

$$\min_{x\in\mathbb{R}^n} E[f(x,\xi)]$$

where $E[\cdots]$ is expected value averaging over random vars ξ

Deep-learning example: Fitting ("learning") to a huge "training set" by sampling a random subset ξ : $f(x,\xi) = \sum_{k \in \xi} f_k(x)$

 $\nabla_x f$ often exists, but typically can't use standard gradient-descent because of randomness.

A popular algorithm: Adam [Kingma & Ba, 2014] "stochastic gradient descent"

Some Sources of Software

- NLopt: implements many nonlinear optimization algorithms callable from many languages (C, Python, R, Matlab, ...) (global/local, constrained/unconstrained, derivative/no-derivative) <u>http://github.com/stevengj/nlopt</u>
- Python: scipy.optimize, pyOpt, ...; Julia: JuMP, Optim,...
- Decision tree for optimization software: <u>http://plato.asu.edu/guide.html</u>
 lists many (somewhat older) packages for many problems
- CVX: general convex-optimization package <u>http://cvxr.com</u> ... also Python CVXOPT, R CVXR, Julia Convex

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

18.335J Introduction to Numerical Methods Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.