18.335 Midterm, Fall 2011

Problem 1: (10+15 points)

Suppose *A* is a diagonalizable matrix with eigenvectors \mathbf{v}_k and eigenvalues λ_k , in decreasing order $|\lambda_1| \ge |\lambda_2| \ge \cdots$. Recall that the power method starts with a random \mathbf{x} and repeatedly computes $\mathbf{x} \leftarrow A\mathbf{x}/||A\mathbf{x}||_2$.

- (a) Suppose |λ₁| = |λ₂| > |λ₃|, but λ₁ ≠ λ₂. Explain why the power method will not in general converge.
- (b) Give a *simple* fix to obtain λ₁ and λ₂ and v₁ and v₂ from the power method or some small modification thereof. (No fair going to some much more complicated/expensive algorithm like inverse iteration, Arnoldi, QR, or simultaneous iteration!)

Problem 2: (25 points)

Review: We described GMRES as minimizing the norm $\|\mathbf{r}\|_2$ of the residual $\mathbf{r} = \mathbf{b} - A\mathbf{x}$ over all $\mathbf{x} \in \mathscr{K}_n$ where $\mathscr{K}_n = \operatorname{span}\langle \mathbf{b}, A\mathbf{b}, \dots, A^{n-1}\mathbf{b} \rangle$. This was done using Arnoldi (starting with $\mathbf{q}_1 = \mathbf{b}/\|\mathbf{b}\|_2$) to build up an orthonormal basis Q_n of A, where $AQ_n = Q_{n+1}\tilde{H}_n$ (\tilde{H}_n being an $(n+1) \times n$ upper-Hessenberg matrix), in terms of which we wrote $\mathbf{x} = Q_n \mathbf{y}$ and solved the least-square problem $\min_{\mathbf{y}} \|\tilde{H}_n \mathbf{y} - \mathbf{b}\mathbf{e}_1\|_2$ where $b = \|b\|_2$ and $\mathbf{e}_1 = (1, 0, 0, \dots)^T$ (since $\mathbf{b} = Q_{n+1}b\mathbf{e}_1$).

• Suppose, after *n* steps, we want to *restart* GM-RES. That is, we want to restart our Arnoldi process with *one* vector $\tilde{\mathbf{q}}_1$ based (somehow) on the solution $\mathbf{x}_0 = Q_n \mathbf{y}$ from the *n*-th step, and build up a *new* Krylov space. What should $\tilde{\mathbf{q}}_1$ be, and what minimal-residual problem should we solve on each step of the new GMRES iterations, to obtain *improved* solutions \mathbf{x} in *some* Krylov space?

(*Note:* if you're remembering implicitly restarted Lanczos now and panicking, *relax*: all the complexity there was to restart with a subspace of dimension > 1, which doesn't apply when we are restarting with only one vector. Think simpler.)

(*Note:* be sure to obtain a *small* least-squared problem on each step. No $m \times n$ problems! This may screw up the first thing you try. Hint: think about residuals.)

Problem 3: (15+10 points)

- (a) The following two sub-parts can be solved independently (you can answer the second part even if you fail to prove the first part):
 - (i) Suppose *A* is an $m \times n$ matrix with rank *n* (i.e., independent columns). Let $B = A_{:,1:p}$ be the first p $(1 \le p \le n)$ columns of *A*. Show that $\kappa(A) \ge \kappa(B)$. (Hint: recall that our first way of defining $\kappa(A)$ was by $\kappa(A) = \left[\max_{\mathbf{x} \ne 0} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|}\right] \cdot \left[\max_{\mathbf{x} \ne 0} \frac{\|\mathbf{x}\|}{\|A\mathbf{x}\|}\right]$.)
 - (ii) Suppose that we are doing least-square fitting of a bunch of data points (containing some experimental errors) to a polynomial. Does the $\kappa(A) \ge \kappa(B)$ result from the previous part tell you about what happens about the sensitivity to errors as you increase the number of data points *or* as you increase the degree of the polynomial, and what does it tell you?
- (b) Prove that if $\kappa(A) = 1$ then A = cQ where $Q^*Q = I$ and *c* is some scalar. (The SVD definition of κ might be easiest here: $\kappa(A) = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$ when *A* has full column rank.)

Problem 4: (8+8+9 points)

Recall that an IEEE double-precision binary floatingpoint number is of the form $\pm s \cdot 2^e$ where the significand s = 1.xxxx... has 53 binary digits (about 16 decimal digits, $\varepsilon_{\text{machine}} \approx 10^{-16}$) and the exponent *e* has 11 binary digits ($e \in [-1022, 1023] \implies 10^{-308} \leq 2^e \leq 10^{308}$).

- (a) Computing $\sqrt{x^2 + y^2}$ by the obvious method, $\sqrt{(x \otimes x) \oplus (y \otimes y)}$ sometimes yields " ∞ " (Inf) even when x and y are well within the representable range. Propose a solution.
- (b) Explain why solving x² + 2bx + 1 = 0 for x by the usual quadratic formula x = −b ± √b² − 1 might be very inaccurate for some b, and propose a solution.
- (c) How might you compute 1 cos x accurately for small |x|? Assume you have floating-point sin and cos functions that compute exactly rounded results, i.e. sinx = fl(sinx) and cos x = fl(cos x).

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

18.335J Introduction to Numerical Methods Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.