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MATLAB Sparse Matrices: Design Principles 

• Most operations should give the same results for sparse and full matrices 

• Sparse matrices are never created automatically, but once created they 

propagate 

• Performance is important – but usability, simplicity, completeness, and 

robustness are more important 

• Storage for a sparse matrix should be O(nonzeros) 

• Time for a sparse operation should be close to O(flops) 
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Compressed Column Format - Observations 

• Element look-up: O(log #elements in column) time 

• Insertion of new nonzero very expensive 

• Sparse vector = Column vector (not Row vector) 
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Sparse vs. Dense Matrices 

• A sparse matrix is a matrix with enough zeros that it is 

worth taking advantage of them [Wilkinson] 

b c d 
• A structured matrix has enough structure that it is 

a b c 
worthwhile to use it (e.g. Toeplitz) b a b 

c b a 

d c b 

• A dense matrix is neither sparse nor structured 
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Data Structures for Matrices 

Full: 

• Storage: Array of real (or complex) numbers 

• Memory: nrows*ncols 

31 0 53 

0 59 0 

41 26 0 

double *A
 

Sparse:	 double *Pr 31 41 59 26 53 

• Compressed column storage 
int *Ir
 

• Memory: About 
1 3 2 3 1 

1.5*nnz+.5*ncols 

int *Jc
 1 3 5 6 

Graphs and Sparsity: Cholesky Factorization 
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G(A) G+(A) 

Fill: New nonzeros in factor 

Symmetric Gaussian 

Elimination: 

for j = 1 to N 

Add edges between j �s 

higher-numbered neighbors 
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Permutations of the 2-D Model Problem 

• 2-D Model Problem: Poisson’s Equation on n × n finite difference grid 

• Total number of unknowns n2 = N 

• Theoretical results for the fill-in: 

– With natural permutation: O(N 3/2) fill 

– With any permutation: �(N log N ) fill 

– With a nested dissection permutation: O(N log N) fill 
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Heuristic Fill-Reducing Matrix Permutations 

• Banded orderings (Reverse Cuthill-McKee, Sloan, etc): 

– Try to keep all nonzeros close to the diagonal 

– Theory, practice: Often wins for “long, thin” problems 

• Minimum degree: 

– Eliminate row/col with fewest nonzeros, add fill, repeat 

– Hard to implement efficiently – current champion is “Approximate 

Minimum Degree” [Amestoy, Davis, Duff] 

– Theory: Can be suboptimal even on 2-D model problem 

– Practice: Often wins for medium-sized problems 

9 

Fill-Reducing Permutations in Matlab 

• Reverse Cuthill-McKee: 

– p=symrcm(A); 

– Symmetric permutation: A(p,p) often has smaller bandwidth than A 

• Symmetric approximate minimum degree: 

– p=symamd(A); 

– Symmetric permutation: chol(A(p,p)) sparser than chol(A) 

• Nonsymmetric approximate minimum degree: 

– p=colamd(A); 

– Column permutation: lu(A(:,p)) sparser than lu(A) 

• Symmetric nested dissection: 

– Not built into MATLAB, several versions in the MESHPART toolbox 
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Nested Dissection Ordering 

• A separator in a graph G is a set S of vertices whose removal leaves at 

least two connected components 

• A nested dissection ordering for an N -vertex graph G numbers its 

vertices from 1 to N as follows: 

– Find a separator S, whose removal leaves connected components 

T1, T2, . . . , Tk 

– Number the vertices of S from N − |S| + 1 to N 

– Recursively, number the vertices of each component: T1 from 1 to 

|T1|, T2 from |T1| + 1 to |T1| + |T2|, etc 

– If a component is small enough, number it arbitrarily 

• It all boils down to finding good separators! 
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Heuristic Fill-Reducing Matrix Permutations 

• Nested dissection: 

– Find a separator, number it last, proceed recursively 

– Theory: Approximately optimal separators =� approximately optimal 

fill and flop count 

– Practice: Often wins for very large problems 

• The best modern general-purpose orderings are ND/MD hybrids 
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Complexity of Direct Methods 

• Time and space to solve any problem on any well-shaped finite element 

mesh with N nodes: 

1-D 2-D 3-D 

Space (fill): O(N ) O(N log N) O(N 4/3) 

Time (flops): O(N ) O(N 3/2) O(N 2) 
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