Lecture 24

 Sparse Matrix AlgorithmsMIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson
November 28, 2006

A sparse matrix is a matrix with enough zeros that it is worth taking advantage of them [Wilkinson]

- A structured matrix has enough structure that it is worthwhile to use it (e.g. Toeplitz)
- A dense matrix is neither sparse nor structured

2

MATLAB Sparse Matrices: Design Principles

- Most operations should give the same results for sparse and full matrices
- Sparse matrices are never created automatically, but once created they propagate
- Performance is important - but usability, simplicity, completeness, and robustness are more important
- Storage for a sparse matrix should be O (nonzeros)
- Time for a sparse operation should be close to O (flops)

Data Structures for Matrices

Full:

- Storage: Array of real (or complex) numbers
- Memory: nrows*ncols

double *A

Sparse:

- Compressed column storage
- Memory: About
1.5*nnz+.5*ncols

$$
\begin{aligned}
& \text { double *Pr } \begin{array}{|l|l|l|l|l|}
\hline 31 & 41 & 59 & 26 & 53 \\
\hline
\end{array} \\
& \text { int *Ir } \begin{array}{|l|l|l|l|l|}
\hline 1 & 3 & 2 & 3 & 1 \\
\hline
\end{array} \\
& \text { int *Jc }
\end{aligned}
$$

Compressed Column Format - Observations

- Element look-up: $O(\log$ \#elements in column $)$ time
- Insertion of new nonzero very expensive
- Sparse vector $=$ Column vector (not Row vector)

Graphs and Sparsity: Cholesky Factorization

Permutations of the 2-D Model Problem

- 2-D Model Problem: Poisson's Equation on $n \times n$ finite difference grid
- Total number of unknowns $n^{2}=N$
- Theoretical results for the fill-in:
- With natural permutation: $O\left(N^{3 / 2}\right)$ fill
- With any permutation: $\Omega(N \log N)$ fill
- With a nested dissection permutation: $O(N \log N)$ fill

Nested Dissection Ordering

- A separator in a graph G is a set S of vertices whose removal leaves at least two connected components
- A nested dissection ordering for an N-vertex graph G numbers its vertices from 1 to N as follows:
- Find a separator S, whose removal leaves connected components $T_{1}, T_{2}, \ldots, T_{k}$
- Number the vertices of S from $N-|S|+1$ to N
- Recursively, number the vertices of each component: T_{1} from 1 to $\left|T_{1}\right|, T_{2}$ from $\left|T_{1}\right|+1$ to $\left|T_{1}\right|+\left|T_{2}\right|$, etc
- If a component is small enough, number it arbitrarily
- It all boils down to finding good separators!

Heuristic Fill-Reducing Matrix Permutations

- Banded orderings (Reverse Cuthill-McKee, Sloan, etc):
- Try to keep all nonzeros close to the diagonal
- Theory, practice: Often wins for "long, thin" problems
- Minimum degree:
- Eliminate row/col with fewest nonzeros, add fill, repeat
- Hard to implement efficiently - current champion is "Approximate Minimum Degree" [Amestoy, Davis, Duff]
- Theory: Can be suboptimal even on 2-D model problem
- Practice: Often wins for medium-sized problems

Heuristic Fill-Reducing Matrix Permutations

- Nested dissection:
- Find a separator, number it last, proceed recursively
- Theory: Approximately optimal separators \Longrightarrow approximately optimal fill and flop count
- Practice: Often wins for very large problems
- The best modern general-purpose orderings are ND/MD hybrids

Fill-Reducing Permutations in Matlab

- Reverse Cuthill-McKee:
- $\mathrm{p}=\operatorname{symrcm}(\mathrm{A})$;
- Symmetric permutation: A (p, p) often has smaller bandwidth than A
- Symmetric approximate minimum degree:
- $\mathrm{p}=\operatorname{symamd}(\mathrm{A})$;
- Symmetric permutation: chol (A (p, p)) sparser than chol (A)
- Nonsymmetric approximate minimum degree:
- $\mathrm{p}=\operatorname{col}$ amd (A) ;
- Column permutation: $\operatorname{lu}(A(:, p))$ sparser than $\operatorname{lu}(A)$
- Symmetric nested dissection:
- Not built into MATLAB, several versions in the MESHPART toolbox

Complexity of Direct Methods

- Time and space to solve any problem on any well-shaped finite element mesh with N nodes:

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

