

Lecture 24
Sparse Matrix Algorithms

MIT 18.335J / 6.337J

Introduction to Numerical Methods

Per-Olof Persson

November 28, 2006

1

MATLAB Sparse Matrices: Design Principles

• Most operations should give the same results for sparse and full matrices

• Sparse matrices are never created automatically, but once created they

propagate

• Performance is important – but usability, simplicity, completeness, and

robustness are more important

• Storage for a sparse matrix should be O(nonzeros)

• Time for a sparse operation should be close to O(flops)

3

Compressed Column Format - Observations

• Element look-up: O(log #elements in column) time

• Insertion of new nonzero very expensive

• Sparse vector = Column vector (not Row vector)

5

Sparse vs. Dense Matrices

• A sparse matrix is a matrix with enough zeros that it is

worth taking advantage of them [Wilkinson]

b c d
• A structured matrix has enough structure that it is

a b c
worthwhile to use it (e.g. Toeplitz) b a b

c b a

d c b

• A dense matrix is neither sparse nor structured

e

d

c

b

a

2

a

b

c

d

e

4

Data Structures for Matrices

Full:

• Storage: Array of real (or complex) numbers

• Memory: nrows*ncols

31 0 53

0 59 0

41 26 0

double *A

Sparse:	 double *Pr 31 41 59 26 53

• Compressed column storage
int *Ir

• Memory: About
1 3 2 3 1

1.5*nnz+.5*ncols

int *Jc
 1 3 5 6

Graphs and Sparsity: Cholesky Factorization

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

G(A) G+(A)

Fill: New nonzeros in factor

Symmetric Gaussian

Elimination:

for j = 1 to N

Add edges between j �s

higher-numbered neighbors

6

Permutations of the 2-D Model Problem

• 2-D Model Problem: Poisson’s Equation on n × n finite difference grid

• Total number of unknowns n2 = N

• Theoretical results for the fill-in:

– With natural permutation: O(N 3/2) fill

– With any permutation: �(N log N) fill

– With a nested dissection permutation: O(N log N) fill

7

Heuristic Fill-Reducing Matrix Permutations

• Banded orderings (Reverse Cuthill-McKee, Sloan, etc):

– Try to keep all nonzeros close to the diagonal

– Theory, practice: Often wins for “long, thin” problems

• Minimum degree:

– Eliminate row/col with fewest nonzeros, add fill, repeat

– Hard to implement efficiently – current champion is “Approximate

Minimum Degree” [Amestoy, Davis, Duff]

– Theory: Can be suboptimal even on 2-D model problem

– Practice: Often wins for medium-sized problems

9

Fill-Reducing Permutations in Matlab

• Reverse Cuthill-McKee:

– p=symrcm(A);

– Symmetric permutation: A(p,p) often has smaller bandwidth than A

• Symmetric approximate minimum degree:

– p=symamd(A);

– Symmetric permutation: chol(A(p,p)) sparser than chol(A)

• Nonsymmetric approximate minimum degree:

– p=colamd(A);

– Column permutation: lu(A(:,p)) sparser than lu(A)

• Symmetric nested dissection:

– Not built into MATLAB, several versions in the MESHPART toolbox

11

Nested Dissection Ordering

• A separator in a graph G is a set S of vertices whose removal leaves at

least two connected components

• A nested dissection ordering for an N -vertex graph G numbers its

vertices from 1 to N as follows:

– Find a separator S, whose removal leaves connected components

T1, T2, . . . , Tk

– Number the vertices of S from N − |S| + 1 to N

– Recursively, number the vertices of each component: T1 from 1 to

|T1|, T2 from |T1| + 1 to |T1| + |T2|, etc

– If a component is small enough, number it arbitrarily

• It all boils down to finding good separators!

8

Heuristic Fill-Reducing Matrix Permutations

• Nested dissection:

– Find a separator, number it last, proceed recursively

– Theory: Approximately optimal separators =� approximately optimal

fill and flop count

– Practice: Often wins for very large problems

• The best modern general-purpose orderings are ND/MD hybrids

10

Complexity of Direct Methods

• Time and space to solve any problem on any well-shaped finite element

mesh with N nodes:

1-D 2-D 3-D

Space (fill): O(N) O(N log N) O(N 4/3)

Time (flops): O(N) O(N 3/2) O(N 2)

12

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page

