
18.335 Midterm Exam Solutions: Spring 2019

Problem 1: (10 points)

The general formula for κ(A), from the book, is the supremum of the condition number ‖A‖ · ‖x‖/‖Ax‖ for
all x, i.e.

κ(A) = ‖A‖

(
sup
x 6=0

‖x‖
‖Ax‖

)
=

(
sup
x 6=0

‖Ax‖
‖x‖

)(
sup
x 6=0

‖x‖
‖Ax‖

)
.

Since A (n columns) is a subset of the columns of B(n′≥ n columns), then for every x∈Cn there is an x′ ∈Cn′

such that Ax = Bx′ — that is, x′ is simply x padded with zeros for the extra columns of B. Furthermore, in
any of our Lp norms we have ‖x‖= ‖x′‖. So, if x∗ is a vector where ‖Ax‖

‖x‖ achieves its supremum, there is an

x′ such that ‖Ax∗‖
‖x∗‖ = ‖Bx′‖

‖x′‖ , and hence

sup
x 6=0

‖Ax‖
‖x‖

≤ sup
x′ 6=0

‖Bx′‖
‖x′‖

.

Similarly for ‖x‖‖Ax‖ . Hence κ(A)≤ κ(B).

Problem 2: (5+5 points)

For a diagonalizable m×m matrix A = XΛX−1, the matrix square root is

A
1
2 = XΛ

1
2 X−1 = X

√

λ1 √
λ2

. . . √
λm

X−1.

(a) A may be nearly defective, in which case X is badly conditioned and multiplying by X or X−1 will be
inaccurate. (Being exactly defective is exceedingly rare — a set of measure zero among all matrices,
so you might ignore this case, but you can’t ignore the possibility of being nearly defective.)

(b) One possible answer is that all her matrices are Hermitian (or anti-Hermitian/skew-Hermitian).

For the XΛ
1
2 X−1 formula to be accurate, you need X to be well-conditioned, and the best case for this

is if A is normal (AA∗ = A∗A), in which case X can be chosen unitary (condition number 1). The only
cases where you can typically see that A is normal by inspection are the Hermitian or anti-Hermitian
cases. (Another possibility would be diagonal matrices A, but you were told that the matrices were
non-sparse.)

Problem 3: (10 points)

If one of the xi values is sufficiently large and positive (& 710 in double precision), then exi will overflow
and you will get +Inf. Alternatively, if all of the xi values are sufficiently large in magnitude and negative
(.−745 in double precision), then exi will underflow to +0.0 and the log will give you −Inf. To start with,
we want to avoid both of these cases.

8/10 points: A simple solution is to compute X = maxi xi, and then use the identity

f (x) = log

(
n

∑
i=1

exi

)
= log

(
eX

n

∑
i=1

exi−X

)
= X + log

(
n

∑
i=1

exi−X

)
.

1

This solves the overflow problem, because xi−X ≤ 0 and hence exi−X can only be small, not large. What
about underflow? Without loss of generality, let’s suppose that X = x1. Then we have

f (x) = X + log

(
1+

n

∑
i=2

exi−X

)
.

Notice that exi−X in the sum may underflow to zero, but we will never get zero as the argument of the log
because we have 1+ · · · ≥ 1 . So we won’t get −Inf even if the xi are large negative numbers.

10/10 points: However, there is still a subtle problem: if ∑
n
i=2 exi−X� 1, then in floating-point arithmetic

we may get

X + log

(
1⊕

n

∑
i=2

exi−X

)
= X + log(1) = X ,

so the contribution of the ∑
n
i=2 exi−X is lost. Recall the Taylor expansion

log(1+ y) = y− y2

2
+

y3

3
−·· · ,

so even if 0 < y� 1, we are not supposed to get zero from the log. This can lead to an inaccurate result.
For example, consider the case of n = 2 with x1 = 10−20 > x2 = log10−20 ≈ −46.0517. Then the correct
answer is

x1 + log(1+ ex2) = 10−20 + log(1+10−20)≈ 2×10−20.

but in floating-point arithmetic we will get x1⊕ log(1⊕ ex2) = x1⊕ log(1) = x1 ≈ 10−20, which is off by a
factor of 2! The solution is that we need to compute log1p(y) = log(1+ y) accurately even for very small
y, and fortunately most math libraries (including Julia’s) provide a built-in “log1p” function that does just
that. So, in summary, if we want an accurate result we really need to use a floating-point version of the
expression:

f (x) = X + log1p(∑
′ exi−X),

where ∑
′ denotes the sum omitting a single term with xi = X = max j x j. If we want, we could implement

this sum with pairwise summation or similar, for even more accuracy. If we didn’t have a “log1p” function
available, to accurately compute log1p(y) = log(1+ y) , we could implement it ourselves using the Taylor
series when |y| is sufficiently small (although it turns out that there are more clever ways to do it).

Problem 4: (10 points)
8/10: We can use the Hessenberg factorization A = QHQ∗, which can be computed in Θ(m3) operations
from class, and for which H is tridiagonal if A is Hermitian. Then

f (z) = det(A− zI) = det(QHQ∗− zI) = det [Q(H− zI)Q∗] = det(Q)det(H− zI)det(Q∗) = det(H− zI)

by elementary properties of determinants. Since H − zI is tridiagonal, as mentioned in class we can find
its LU factorization in Θ(m) operations, from which the determinant is simply the product of the diagonal
entries of U . A little care is needed for the case where H− zI is nearly singular, though.

10/10: Since in neither the book nor in class did we explicitly study the LU decomposition of tridiagonal
matrices — I only stated in passing that it was Θ(m) — and some care is needed in the singular case, to get
full marks on this problem you need to do a bit more work to convince me of how you would compute detH.
In particular, there are lots of ways to derive nice explicit formulas here. (Outside of an exam you would just
google “determinant tridiagonal matrix,” of course.) For example, if we write:

H =

a1 b1
b1 a2 b2

b2 a3
. . .

. bm−1
bm−1 am

 ,

2

then each step of Gaussian elimination transforms the 2×2 diagonal block(
dk bk
bk ak+1

)
−→

(
dk bk

0 ak+1− bkbk
dk

)
,

so that the diagonal entries satisfy the recurrence relation

d1 = a1

dk+1 = ak+1−
|bk|2

dk
.

and once it is reduced to upper-triangular form then the determinant is simply the product of the pivots ∏dk.
This recurrence may look slightly dangerous at first — what if dk = 0? However, this division by zero goes
away when you multiply the entries together — consider the term dkdk+1 — and after a little thought you
can see that the the product

pk =
k

∏
i=1

dk

satisfies a simpler recurrence (called the “continuant” in linear algebra):

p0 = 1
p1 = a1

pk+1 = dk+1 pk = pkak+1− pk−1|bk|2,

which has no possibility of division by zero, giving detH = pm in Θ(m) operations. Finally, get det(H− zI),
we simply modify this recurrence to subtract z from the diagonals:

p0 = 1
p1 = a1− z

pk+1 = pk(ak+1− z)− pk−1|bk|2.

This recurrence can also be derived in other ways, e.g. by cofactor formulas. For the case of real bi (real-
symmetric A and H), the same recurrence is given in equation (30.9) of the Trefethen & Bau textbook.

Another possible Θ(m) determinant algorithm is to do the QR factorization of H − zI, which can be
accomplished in Θ(m) operations by Givens rotations as you showed in pset 3. Then the determinant is
simply detR (since detQ = 1 for Givens rotations), which is the product of the diagonal entries of R.

3

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

