18.335 Midterm Exam: Spring 2019

Problem 0: Honor code

Copy and sign the following in your solutions:
I have not used any resources to complete this exam other than my own 18.335 notes, the textbook, and
posted 18.335 course materials.

your signature

Problem 1:

If the matrix A is a subset of the columns of matrix B, show that x(A) < x(B), where k denotes the condition
number of the matrices. (Note that since A is non-square, you can’t use the ||A|| - |A~!|| definition of x(A)
but must use instead the more general definition from the upper bound of equation 12.9 in the book.)

Problem 2:

For a diagonalizable m x m matrix A = XAX —1 the matrix square root is

v

. 1
(a) For general matrices, the XA2X ™! may not be acCurate bECauSe ..............co.cvveurereereevereeresreseessereesenaenes ?
(One-sentence answer, please.)

(b) Your friend Alyssa P. Hacker is using the X AzX! formula, but is not worried about accuracy because
she can see by inspection (no calculation required) that her A matrices (which are not sparse) are all
....................................................................................... (Give a good example of a valid reason.)

Problem 3:

Suppose that you have a vector x € F" of n double-precision floating-point values (but no +Inf or NaN) and
you want to compute

f(x) =log ()i ex")

i=1

accurately. [You are given the usual library functions that compute log (of positive values) and exp accurately
for individual I inputs (to a forward relative error of a few times €pachine, 1-€. to within a few ulps).] Your
friend J. Harvard wrote some code directly from the definition, above, but you notice that it gives Inf for
a lot of inputs. Explain how to fix this problem: describe an algorithm that will get a reasonably accurate
answer for arbitrary x. (You don’t need to prove backwards stability.)



Problem 4:

If we have good initial guesses for one or more of the eigenvalues of the m x m Hermitian matrix A = A*
then we can simply apply Newton’s method to find a root of f(z) = det(A — zI). However,

(a) We don’t want to explicitly form the polynomial f(z) in terms of its coefficients, since we saw in class
and in the book that any tiny error in the coefficients can lead to a huge error in the roots.

(b) Evaluating f(z) by doing the LU factorization of A — z[ for each z (and then multiplying the diagonal
entries of U) would be too slow, @(m3) for every z.

You are allowed do @ (m?*) preprocessing steps once on the matrix A to compute some factorization of your
choice (but not its diagonalization or Schur form—your preprocessing must be exact in exact arithmetic,
not an iterative method like QR—RQ). Given that factorization of A, describe (in pseudocode) an O(m)
algorithm to compute f(z) for any z, enabling a fast Newton’s method.

 Newton’s method would also require f’(z), which could easily be obtained from your fast f(z) algo-
rithm, but you don’t need to supply this algorithm.

* Don’t worry about overflow/underflow. (In practice, this is easily avoided since Newton’s method only
needs the ratio f/f.)
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