
18.335 Midterm Exam: Spring 2019

Problem 0: Honor code

Copy and sign the following in your solutions:
I have not used any resources to complete this exam other than my own 18.335 notes, the textbook, and

posted 18.335 course materials.

your signature

Problem 1:

If the matrix A is a subset of the columns of matrix B, show that κ(A)≤ κ(B), where κ denotes the condition
number of the matrices. (Note that since A is non-square, you can’t use the ‖A‖ · ‖A−1‖ definition of κ(A)
but must use instead the more general definition from the upper bound of equation 12.9 in the book.)

Problem 2:

For a diagonalizable m×m matrix A = XΛX−1, the matrix square root is

A
1
2 = XΛ

1
2 X−1 = X


√

λ1 √
λ2

. . . √
λm

X−1.

(a) For general matrices, the XΛ
1
2 X−1 may not be accurate because ..?

(One-sentence answer, please.)

(b) Your friend Alyssa P. Hacker is using the XΛ
1
2 X−1 formula, but is not worried about accuracy because

she can see by inspection (no calculation required) that her A matrices (which are not sparse) are all
... (Give a good example of a valid reason.)

Problem 3:

Suppose that you have a vector x ∈ Fn of n double-precision floating-point values (but no ±Inf or NaN) and
you want to compute

f (x) = log

(
n

∑
i=1

exi

)
accurately. [You are given the usual library functions that compute log (of positive values) and exp accurately
for individual F inputs (to a forward relative error of a few times εmachine, i.e. to within a few ulps).] Your
friend J. Harvard wrote some code directly from the definition, above, but you notice that it gives Inf for
a lot of inputs. Explain how to fix this problem: describe an algorithm that will get a reasonably accurate
answer for arbitrary x. (You don’t need to prove backwards stability.)

1

Problem 4:
If we have good initial guesses for one or more of the eigenvalues of the m×m Hermitian matrix A = A∗

then we can simply apply Newton’s method to find a root of f (z) = det(A− zI). However,

(a) We don’t want to explicitly form the polynomial f (z) in terms of its coefficients, since we saw in class
and in the book that any tiny error in the coefficients can lead to a huge error in the roots.

(b) Evaluating f (z) by doing the LU factorization of A− zI for each z (and then multiplying the diagonal
entries of U) would be too slow, Θ(m3) for every z.

You are allowed do Θ(m3) preprocessing steps once on the matrix A to compute some factorization of your
choice (but not its diagonalization or Schur form—your preprocessing must be exact in exact arithmetic,
not an iterative method like QR−→RQ). Given that factorization of A, describe (in pseudocode) an O(m)
algorithm to compute f (z) for any z, enabling a fast Newton’s method.

• Newton’s method would also require f ′(z), which could easily be obtained from your fast f (z) algo-
rithm, but you don’t need to supply this algorithm.

• Don’t worry about overflow/underflow. (In practice, this is easily avoided since Newton’s method only
needs the ratio f/ f ′.)

2

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

