18.335 Problem Set 3

Problem 1: QR and orthogonal bases

(a) Trefethen, problem 10.4.
(b) Prove that $A=Q R$ and $B=R Q$ have the same eigenvalues, assuming A is a square matrix. Then do a little experiment: Construct a random 5×5 real-symmetric matrix in Julia via $\mathrm{X}=\mathrm{rand}(5,5)$; $\mathrm{A}=\mathrm{X},+\mathrm{X}$. Use $\mathrm{QR}=\mathrm{qr}(\mathrm{A})$ (do using LinearAlgebra first) to compute the QR factorization of A, and then compute $\mathrm{B}=\mathrm{QR} . \mathrm{R} * \mathrm{QR} . \mathrm{Q}$. Then find the QR factorization $B=Q^{\prime} R^{\prime}$, and compute $R^{\prime} Q^{\prime} .$. repeat this process until the matrix converges (maybe writing a loop and/or a function). From what it converges to, suggest a procedure to compute the eigenvalues and eigenvectors of a realsymmetric matrix (no need to prove that it converges in general-we will discuss this in class).
(c) Trefethen, problem 28.2,

Problem 2: Schur fine

In class, we will show that any square $m \times m$ matrix A can be factorized as $A=Q T Q^{*}$ (the Schur factorization), where Q is unitary and T is an upper-triangular matrix (with the same eigenvalues as A, since the two matrices are similar).
(a) A is called "normal" if $A A^{*}=A^{*} A$. Show that this implies $T T^{*}=T^{*} T$. From this, show that T must be diagonal. Hence, any normal matrix (e.g. unitary or Hermitian matrices) must be unitarily diagonalizable. Hint: consider the diagonal entries of $T T^{*}$ and $T^{*} T$, starting from the $(1,1)$ entries and proceeding diagonally downwards by induction.
(b) Given the Schur factorization of an arbitary A (not necessarily normal), describe an algorithm to find the eigenvalues and eigenvectors of A, assuming for simplicity that all the eigenvalues are distinct. The flop count should be asymptotically $K m^{3}+O\left(m^{2}\right)$; give the constant K.

Problem 3: Caches and backsubstitution

In this problem, you will consider the impact of caches (again in the ideal-cache model from class) on the problem of backsubstitution: solving $R x=b$ for x, where R is an $m \times m$ upper-triangular matrix (such as might be obtained by Gaussian elimination). The simple algorithm you probably learned in previous linear-algebra classes (and reviewed in the book, lecture 17) is (processing the rows from bottom to top):

$$
\begin{aligned}
& x_{m}=b_{m} / r_{m m} \\
& \text { for } j=m-1 \text { down to } 1 \\
& \quad x_{j}=\left(b_{j}-\sum_{k=j+1}^{m} r_{j k} x_{k}\right) / r_{j j}
\end{aligned}
$$

Suppose that X and B are $m \times n$ matrices, and we want to solve $R X=B$ for X-this is equivalent to solving $R x=b$ for n different right-hand sides b (the n columns of B). One way to solve the $R X=B$ for X is to apply the standard backsubstitution algorithm, above, to each of the n columns in sequence.
(a) Give the asymptotic cache complexity $Q(m, n ; Z)$ (in asymptotic Θ notation, ignoring constant factors) of this algorithm for solving $R X=B$.
(b) Suppose $m=n$. Propose an algorithm for solving $R X=B$ that achieves a better asymptotic cache complexity (by cache-aware/blocking or cache-oblivious algorithms, your choice). Can you gain the factor of $1 / \sqrt{Z}$ savings that we showed is possible for square-matrix multiplication?

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

