

18.335 Problem Set 3

Problem 1: QR and orthogonal bases
(a) Trefethen, problem 10.4.

(b) Prove that A = QR and B = RQ have the same eigenvalues, assuming A is a square matrix. Then
do a little experiment: Construct a random 5 × 5 real-symmetric matrix in Julia via X=rand(5,5);
A = X’ + X. Use QR = qr(A) (do using LinearAlgebra first) to compute the QR factorization
of A, and then compute B = QR.R * QR.Q. Then find the QR factorization B = Q0R0 , and compute
R0Q0...repeat this process until the matrix converges (maybe writing a loop and/or a function). From
what it converges to, suggest a procedure to compute the eigenvalues and eigenvectors of a real-
symmetric matrix (no need to prove that it converges in general—we will discuss this in class).

(c) Trefethen, problem 28.2,

Problem 2: Schur fine
In class, we will show that any square m × m matrix A can be factorized as A = QT Q∗ (the Schur factoriza-
tion), where Q is unitary and T is an upper-triangular matrix (with the same eigenvalues as A, since the two
matrices are similar).

(a) A is called “normal” if AA∗ = A∗A. Show that this implies T T ∗ = T ∗T . From this, show that T
must be diagonal. Hence, any normal matrix (e.g. unitary or Hermitian matrices) must be unitarily
diagonalizable. Hint: consider the diagonal entries of T T ∗ and T ∗T , starting from the (1,1) entries
and proceeding diagonally downwards by induction.

(b) Given the Schur factorization of an arbitary A (not necessarily normal), describe an algorithm to find
the eigenvalues and eigenvectors of A, assuming for simplicity that all the eigenvalues are distinct.
The flop count should be asymptotically Km3 + O(m2); give the constant K.

Problem 3: Caches and backsubstitution
In this problem, you will consider the impact of caches (again in the ideal-cache model from class) on
the problem of backsubstitution: solving Rx = b for x, where R is an m × m upper-triangular matrix (such
as might be obtained by Gaussian elimination). The simple algorithm you probably learned in previous
linear-algebra classes (and reviewed in the book, lecture 17) is (processing the rows from bottom to top):

xm = bm/rmm

for j = m − 1 down to 1
x j = (b j − ∑m

k= j+1 r jkxk)/r j j

Suppose that X and B are m × n matrices, and we want to solve RX = B for X—this is equivalent to solving
Rx = b for n different right-hand sides b (the n columns of B). One way to solve the RX = B for X is to apply
the standard backsubstitution algorithm, above, to each of the n columns in sequence.

(a) Give the asymptotic cache complexity Q(m,n;Z) (in asymptotic Θ notation, ignoring constant factors)
of this algorithm for solving RX = B.

(b) Suppose m = n. Propose an algorithm for solving RX = B that achieves a better asymptotic cache
complexity (by cache-aware/blocking or cache-oblivious algorithms, your choice). Can you gain the √
factor of 1/ Z savings that we showed is possible for square-matrix multiplication?

1

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page

