
18.335 Problem Set 4 Solutions 

Problem 1: (10 points) 
This is a Galerkin method, very similar to the Rayleigh–Ritz method, and is known as the “FOM” algorithm 
(“full orthogonalization method”). There are some FOM references on the 18.335 lecture-summary page: in 
practice, it converges similarly to GMRES, but with some inconvenient quirks, so it is rarely used in practice. 

We want to find x ∈ Kn where b − Ax is ⊥ Kn. x ∈ Kn implies that x = Qnz for some z ∈ Cn , and 
b−Ax ⊥ Kn means Q∗(b−Ax) = 0 = Q∗b −Q∗AQnz. From class (and the book), Q∗AQn = Hn. So, we have n n n n 
the n × n system of equations 

Hnz = Q∗b n 

whose solution gives x = Qnz. 
In the common case where our iterative method starts with the initial guess x1 = 0, then the first vector 

in the Arnoldi iteration is q1 = b/kbk2, and the above equation simplies further: Q∗b = e1kbk2 where e1 is n 
the coordinate vector (1,0,0, . . .)T as usual, but this simplification isn’t that vital. 

Problem 2: (5+10 points) 
Suppose A is a diagonalizable matrix with eigenvectors vk and eigenvalues λk, in decreasing order |λ1| ≥ 
|λ2| ≥ · · · . Recall that the power method starts with a random x and repeatedly computes x ← Ax/kAxk2. 

(a) After many iterations of the power method, the λ1 and λ2 terms will dominate: 

x ≈ c1v1 + c2v2 

for some c1 and c2. However, this is not an eigenvector. Multiplying this by A gives λ1c1v1 +λ2c2v2 = � � 
λ2 λ1 c1v1 + c2v2 , which is not a multiple of x and hence will be a different vector after normalizing, 
λ1 

meaning that it does not converge to any fixed vector. 

(b) The key point is that if we look at the vectors x ≈ c1v1 + c2v2 and y ≈ λ1c1v1 + λ2c2v2 from two 
subsequent iterations, then after many iterations these are linearly independent vectors that span 
the two desired eigenvectors. We can then employ e.g. a Rayleigh–Ritz procedure to find v1 and v2: 
use Gram–Schmidt to find an orthonormal basis q1 = x/kxk2 and q2 = (y − q1q ∗ 1y)/k· · ·k2, form the 
matrix Q = (q1,q2) and find the 2× 2 matrix A2 = Q∗AQ. The eigenvalues of A2 (the Ritz values) will 
then converge to the eigenvalues λ1 and λ2 and we obtain v1 and v2 (or some multiple thereof) from 
the corresponding Ritz vectors. The key point is that AQ is in the span of q1 and q2 (in the limit of 
many iterations so that other eigenvectors disappear), so the Ritz vectors are eigenvectors. 

Of course, since we don’t know λ3 then we don’t know how many iterations to run, but we can do the 
obvious convergence tests: every few iterations, find the Ritz values from the last two iterations, and 
stop when these Ritz values stop changing to our desired accuracy. 

Alternatively, if we form the matrix X = (x,y) from the vectors of two subsequent iterations, then 
we know that (after many iterations) the columns of AX are in C(X) = x, y. Therefore, the problem 
AX = XS, where S is a 2 × 2 matrix, has an exact solution S. If we then diagonalize S = ZΛZ−1 and 
multiply both sizes by Z, we obtain AXZ = XZΛ, and hence the columns of XZ are eigenvectors of A 
and the eigenvalues diagΛ of S are the eigenvalues λ1 and λ2 of A. However, this is computationally 
equivalent to the Rayleigh–Ritz procedure above, since to solve AX = XS for S we would first do a QR 
factorization X = QR, and then solve the normal equations X∗XS = X∗AX via RS = Q∗AQR = A2R. 
Thus, S = R−1A2R: the S and A2 eigenproblems are similar; in exact arithmetic, the two approaches 
will give exactly the same eigenvalues and exactly the same Ritz vectors. 

[As yet another equivalent alternative, we could write AXZ = XZΛ as above, and then turn it into 
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(X∗AX)Z = (X∗X)ZΛ, which is a 2× 2 generalized eigenvalue problem, or (X∗X)−1(X∗AX)Z = ZΛ, 
which is an ordinary 2 × 2 eigenproblem.] 

Problem 3 (15 points) 
Trefethen, problem 27.5. The basic answer here is that their is a big roundoff error, but it is in the direc-
tion of the eigenvector we want, so we don’t care (since overall scale factors are irrelevant to eigenvector 
computations). 

In finite precision, instead of w = A−1v, we will get w̃ = w + δ w where δ w = −(A + δ A)−1δ Aw (from 
the formula on page 95), where δ A = O(εmachine)kAk is the backwards error. [Note that we cannot use 
δ w ≈ −A−1δ Aw, which neglects the δ Aδ w terms, because in this case δ w is not small.] The key point, 
however, is to show that δ w is mostly parallel to q1, the eigenvector corresponding to the smallest-magnitude 
eigenvalue λ1 (it is given that all other eigenvalues have magnitude ≥ |λ2| � |λ1|). Since w is also mostly 
parallel to q1, this will mean that w̃/kw̃k2 ≈ q1 ≈ w/kwk2. 

First, exactly as in our analysis of the power method, note that w = A−1v = α1q1[1 + O(λ1/λ2)], since 
A−1 amplifies the q1 component of v by 1/|λ1| which is much bigger than the inverse of all the other 
eigenvalues. Thus, w/kwk2 = q1[1 + O(λ1/λ2)]. 

Second, if we Taylor-expand (A + δ A)−1 in powers of δ A, i.e. in powers of εmachine, we obtain:1 

(A + δ A)−1 = A−1 − A−1δ AA−1 + O(ε2 Since all of the terms in this expansion are multiplied machine ). 
on the left by A−1, when multiplied by any vector they will again amplify the q1 component much more 
than any other component. In particular, the vector δ Aw is a vector in a random direction (since δ A comes 
from roundoff and is essentially random) and hence will have some nonzero q1 component. Thus, δ w = 
−(A + δ A)−1δ Aw = β1q1[1 + O(λ1/λ2)] for some constant β1. 

Putting these things together, we see that w̃ = (α1 + β1)q1[1 + O(λ1/λ2)], and hence w̃/kw̃k2 = q1[1 + 
w O(λ1/λ2)] = kwk2 

[1 + O(λ1/λ2)]. Q.E.D. 

Problem 4 (5+5+5+5+5 pts): 
Trefethen, problem 33.2: 

(a) In this case, the qn+1 vector is multiplied by a zero row in H̃n, and we can simplify 33.13 to AQn = 
QnHn. If we consider the full Hessenberg reduction, H = Q∗AQ, it must have a “block Schur” form: � � 

Hn B 
H = , 0 H 0 

where H 0 is an (m − n) × (m − n) upper-Hessenberg matrix and B ∈ Cn×(m−n). (It is not necessarily 
the case that B = 0; this is only true if A is Hermitian.) 

(b) Qn is a basis for Kn, so any vector x ∈ Kn can be written as x = Qny for some y ∈ Cn . Hence, from 
above, Ax = AQny = QnHny = Qn(Hny) ∈ Kn. Q.E.D. 

(c) The (n + 1) basis vector, Anb, is equal to A(An−1b) where An−1b ∈ Kn. Hence, from above, Anb ∈ Kn 

and thus Kn+1 = Kn. By induction, K` = Kn for ` ≥ n. 

(d) If Hny = λ y, then AQny = QnHny = λ Qny, and hence λ is an eigenvalue of A with eigenvector Qny. 

(e) If A is nonsingular, then Hn is nonsingular (if it had a zero eigenvalue, A would too from above). 
Hence, noting that b is proportional to the first column of Qn, we have: x = A−1b = A−1Qne1kbk = 
A−1QnHnH−1e1kbk = A−1AQnH−1e1kbk = QnH−1e1kbk ∈ Kn. Q.E.D. n n n 

1Write (A + δ A)−1 = [A(I + A−1δ A)]−1 = (I + A−1δ A)−1A−1 ≈ (I − A−1δ A)A−1 = A−1 − A−1δ AA−1. Another approach is to let 
B = (A + δ A)−1 = B0 + B1 + · · · where Bk is the k-th order term in δ A, collect terms order-by-order in I = (B0 + B1 + · · ·)(A + δ A) = 
B0A +(B0δ A + B1A)+ · · · , and you immediately find that B0 = A−1, B1 = −B0δ AA−1 = −A−1δ AA−1, and so on. 
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