18.335 Midterm, Fall 2010

You have 2 hours.

Problem 1: SVD Stability ($\mathbf{3 0}$ points)

Consider the problem of computing the SVD $A=$ $U \Sigma V^{*}$ from a matrix A (the input).
(a) Explain what it would mean for this computation (outputs U, Σ, and V) to be backwards stable.
(b) Explain why this algorithm cannot be backwards stable. (Hint: think about e.g. what property the computed \tilde{U} would have to have.)
(c) Practical SVD algorithms are, however, stable (for the general definition of stability). Write down what this means.

Problem 2: Least squares ($\mathbf{3 0}$ points)

Suppose that we want to solve the weighted leastsquares problem

$$
\min _{x}\left\|B^{-1}(A x-b)\right\|_{2}
$$

where $B(m \times m)$ is a nonsingular square matrix and $A(m \times n)$ has full column rank.
(a) Write down the equivalent of the normal equations ($A^{*} A x=A^{*} b$ for ordinary least-squares) that the optimum x must satisfy. [Reminder: from class, $x^{*} C x-x^{*} d-d^{*} x$ for $C=C^{*}$ positive-semidefinite is minimized when $C x=$ d.]
(b) Give a stable way to solve this that avoids squaring the condition number of A. (Just re-express it in terms of stable algorithms considered in class. You don't have to write out the in-class parts of the algorithm, just say "__ factorization of \qquad " etcetera.)

Problem 3: Eigenvalues (30 points)

(a) Recall the power method: computing $x_{n+1}=$ $A x_{n} /\left\|A x_{n}\right\|$ for $n=1,2, \ldots$, with some random x_{1}, which converges to an eigenvector q_{1} corresponding to the eigenvalue λ_{1} with largest magnitude. (Number the eigenvalues in order $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots$.) Explain why $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$ is
generally a problem for the convergence of this algorithm, but $\lambda_{1}=\lambda_{2}$ is not a problem (assume A is diagonalizable).
(b) Compare and contrast the convergence properties and computational cost of the following two algorithms for computing the eigenvalue closest to μ of a large sparse Hermitian ma$\operatorname{trix} A$, where μ is in the middle of the spectrum somewhere: Lanczos for the smallestmagnitude eigenvalue of $(A-\mu I)^{2}$, or Lanczos for the largest-magnitude eigenvalue of $(A-$ $\mu I)^{-1}$.

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

