
18.335 Problem Set 1 Solutions

Problem 1: (10 points)

The smallest integer that cannot be exactly represented is n = βt + 1 (for base-β with a t-digit
mantissa). You might be tempted to think that βt cannot be represented, since a t-digit number,
at first glance, only goes up to βt − 1 (e.g. three base-10 digits can only represent up to 999, not
1000). However, βt can be represented by βt−1 · β1 , where the β1 is absorbed in the exponent.

In IEEE single and double precision, β = 2 and t = 24 and 53, respectively, giving 224 + 1 =
16,777,217 and 253 + 1 = 9,007,199,254,740,993.

253 Evidence that n = + 1 is not exactly represented but that numbers less than that are can
be presented in a variety of ways. In the pset1-solutions notebook, we check exactness by compar-
ing to Julia’s Int64 (built-in integer) type, which exactly represents values up to 263 − 1.

Problem 2: (10+10 points)

See the pset1 solutions notebook for Julia code, results, and explanations.

Problem 3: (10+10+10 points)

See the pset1 solutions notebook for Julia code, results, and explanations.

Problem 4: (10+5+10 points) Pn Here you will analyze f(x) = i=1 xi as in class, but this time you will compute f̃(x) in a di˙erent
way. In particular, compute f̃(x) by a recursive divide-and-conquer approach known in the literature
as pairwise summation, recursively dividing the set of values to be summed in two halves and
then summing the halves: ⎧ ⎪0 if n = 0 ⎨

f̃(x) = x1 if n = 1 , ⎪⎩
f̃(x1:bn/2c) ⊕ f̃(xbn/2c+1:n) if n > 1

where byc denotes the greatest integer ≤ y (i.e. y rounded down). In exact arithmetic, this computes
f(x) exactly, but in floating-point arithmetic this will have very di˙erent error characteristics than
the simple sequential summation in class.

(a) Suppose n = 2m with m ≥ 1. We will first show that

n m X Y
f̃(x) = xi (1 + �i,k)

i=1 k=1

where |�i,k| ≤ �machine. We prove the above relationship by induction. For n = 2 it follows
from the definition of floating-point arithmetic. Now, suppose it is true for n and we wish to
prove it for 2n. The sum of 2n number is first summing the two halves recursively (which has
the above bound for each half since they are of length n) and then adding the two sums, for
a total result of " #

n m 2n m X Y X Y
f̃(x ∈ R2n) = xi (1 + �i,k) + xi (1 + �i,k) (1 + �)

i=1 k=1 i=n+1 k=1

1

for |�| < �machine. The result follows by inspection, with �i,m+1 = �.

m Then, we use the result from class that
Q

k=1(1 + �i,k) = 1 + δi with |δi| ≤ m�machine +
O(�2

machine). Since m = log2(n), the desired result follows immediately.

(b) Just enlarge the base case. Instead of recursively dividing the problem in two until n < 2,
divide the problem in two until n < N for some N , at which point we sum the < N numbers
with a simple loop as in problem 2. A little arithmetic reveals that this produces ∼ 2n/N
function calls—this is negligible compared to the n − 1 additions required as long as N is
suÿciently large (say, N = 200), and the eÿciency should be roughly that of a simple loop.
(See the pset1 Julia notebook for benchmarks and explanations.)

Using a simple loop has error bounds that grow as N as you showed above, but N is just
a constant, so this doesn’t change the overall logarithmic nature of the error growth with
n. A more careful analysis analogous to above reveals that the worst-case error grows as P P
[N + log2(n/N)]�machine i |xi|. Asymptotically, this is not only log2(n)�machine i |xi|
error growth, but with the same asymptotic constant factor (same coeÿcient of the log2 n
term)!

(c) Instead of “if (n < 2),” just do (for example) “if (n < 200)”. See the notebook for code and
results.

2

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page

