18.335 Problem Set 1 Solutions

Problem 1: (10 points)

The smallest integer that cannot be exactly represented is $n=\beta^{t}+1$ (for base- β with a t-digit mantissa). You might be tempted to think that β^{t} cannot be represented, since a t-digit number, at first glance, only goes up to $\beta^{t}-1$ (e.g. three base- 10 digits can only represent up to 999 , not 1000). However, β^{t} can be represented by $\beta^{t-1} \cdot \beta^{1}$, where the β^{1} is absorbed in the exponent.

In IEEE single and double precision, $\beta=2$ and $t=24$ and 53 , respectively, giving $2^{24}+1=$ $16,777,217$ and $2^{53}+1=9,007,199,254,740,993$.

Evidence that $n=2^{53}+1$ is not exactly represented but that numbers less than that are can be presented in a variety of ways. In the pset1-solutions notebook, we check exactness by comparing to Julia's Int64 (built-in integer) type, which exactly represents values up to $2^{63}-1$.

Problem 2: $(10+10$ points $)$

See the pset1 solutions notebook for Julia code, results, and explanations.

Problem 3: $(10+10+10$ points)

See the pset1 solutions notebook for Julia code, results, and explanations.

Problem 4: $(10+5+10$ points $)$

Here you will analyze $f(x)=\sum_{i=1}^{n} x_{i}$ as in class, but this time you will compute $\tilde{f}(x)$ in a different way. In particular, compute $\tilde{f}(x)$ by a recursive divide-and-conquer approach known in the literature as pairwise summation, recursively dividing the set of values to be summed in two halves and then summing the halves:

$$
\tilde{f}(x)= \begin{cases}0 & \text { if } n=0 \\ x_{1} & \text { if } n=1, \\ \tilde{f}\left(x_{1:\lfloor n / 2\rfloor}\right) \oplus \tilde{f}\left(x_{\lfloor n / 2\rfloor+1: n}\right) & \text { if } n>1\end{cases}
$$

where $\lfloor y\rfloor$ denotes the greatest integer $\leq y$ (i.e. y rounded down). In exact arithmetic, this computes $f(x)$ exactly, but in floating-point arithmetic this will have very different error characteristics than the simple sequential summation in class.
(a) Suppose $n=2^{m}$ with $m \geq 1$. We will first show that

$$
\tilde{f}(x)=\sum_{i=1}^{n} x_{i} \prod_{k=1}^{m}\left(1+\epsilon_{i, k}\right)
$$

where $\left|\epsilon_{i, k}\right| \leq \epsilon_{\text {machine }}$. We prove the above relationship by induction. For $n=2$ it follows from the definition of floating-point arithmetic. Now, suppose it is true for n and we wish to prove it for $2 n$. The sum of $2 n$ number is first summing the two halves recursively (which has the above bound for each half since they are of length n) and then adding the two sums, for a total result of

$$
\tilde{f}\left(x \in \mathbb{R}^{2 n}\right)=\left[\sum_{i=1}^{n} x_{i} \prod_{k=1}^{m}\left(1+\epsilon_{i, k}\right)+\sum_{i=n+1}^{2 n} x_{i} \prod_{k=1}^{m}\left(1+\epsilon_{i, k}\right)\right](1+\epsilon)
$$

for $|\epsilon|<\epsilon_{\text {machine }}$. The result follows by inspection, with $\epsilon_{i, m+1}=\epsilon$.
Then, we use the result from class that $\prod_{k=1}^{m}\left(1+\epsilon_{i, k}\right)=1+\delta_{i}$ with $\left|\delta_{i}\right| \leq m \epsilon_{\text {machine }}+$ $O\left(\epsilon_{\text {machine }}^{2}\right)$. Since $m=\log _{2}(n)$, the desired result follows immediately.
(b) Just enlarge the base case. Instead of recursively dividing the problem in two until $n<2$, divide the problem in two until $n<N$ for some N, at which point we sum the $<N$ numbers with a simple loop as in problem 2. A little arithmetic reveals that this produces $\sim 2 n / N$ function calls-this is negligible compared to the $n-1$ additions required as long as N is sufficiently large (say, $N=200$), and the efficiency should be roughly that of a simple loop. (See the pset1 Julia notebook for benchmarks and explanations.)

Using a simple loop has error bounds that grow as N as you showed above, but N is just a constant, so this doesn't change the overall logarithmic nature of the error growth with n. A more careful analysis analogous to above reveals that the worst-case error grows as $\left[N+\log _{2}(n / N)\right] \epsilon_{\text {machine }} \sum_{i}\left|x_{i}\right|$. Asymptotically, this is not only $\log _{2}(n) \epsilon_{\text {machine }} \sum_{i}\left|x_{i}\right|$ error growth, but with the same asymptotic constant factor (same coefficient of the $\log _{2} n$ term)!
(c) Instead of "if $(\mathrm{n}<2)$," just do (for example) "if $(\mathrm{n}<200)$ ". See the notebook for code and results.

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

