
Fast Fourier Transform Algorithms (MIT IAP 2008)

Prof. Steven G. Johnson, MIT Dept. of Mathematics

January 11, 2008

Fast Fourier transforms (FFTs),O(N log N) algorithms
to compute a discrete Fourier transform (DFT) of sizeN ,
have been called one of the ten most important algorithms
of the 20th century. They are what make Fourier transforms
practical on a computer, and Fourier transforms (which ex-
press any function as a sum of pure sinusoids) are used in
everything from solving partial differential equations to dig-
ital signal processing (e.g. MP3 compression) to multiply-
ing large numbers (for computingπ to1012 decimal places).
Although the applications are important and numerous, the
FFT algorithms themselves reveal a surprisingly rich variety
of mathematics that has been the subject of active research
for 40+ years, and into which this lecture will attempt to dip
your toes. The DFT and its inverse are defined by the fol-
lowing relation betweenN inputsxn andN outputsyk (all
complex numbers):

DFT(xn): yk =

N−1
∑

n=0

xne−
2πi
N

nk, (1)

inverse DFT(yk): xn =
1

N

N−1
∑

k=0

yke+ 2πi
N

nk (2)

where i =
√
−1, recalling Euler’s identity thateiφ =

cosφ+i sinφ. Each of theN DFT outputsk = 0, · · · , N−
1 is the sum ofN terms, so evaluating this formula directly
requiresO(N2) operations.1 The trick is to rearrange this
computation to expose redundant calculations that we can
factor out.

The most important FFT algorithm is called the Cooley-
Tukey (C-T) algorithm, after the two authors who popu-
larized it in 1965 (unknowingly re-inventing an algorithm
known to Gauss in 1805). It works for anycomposite size
N = N1N2 by re-expressing the DFT of sizeN in terms
of smaller DFTs of sizeN1 andN2 (which are themselves
broken down, recursively, into smaller DFTs until the prime
factors are reached). Effectively, C-T expresses the ar-
ray xn of lengthN as a “two-dimensional” array of size
N1 × N2 indexed by(n1, n2), so thatn = N1n2 + n1

(wheren1,2 = 0, · · · , N1,2 − 1). Similarly, the output is
expressed as atransposed 2d array,N2 × N1, indexed by

1Read “O(N2)” as “roughly proportional, for largeN .” e.g. 15N2 +
24N is O(N2). (Technically, I should really sayΘ(N2), but I’m not
going to get that formal.)

(k2, k1), so thatk = N2k1 + k2. Substituted into the DFT
above, this gives:

yN2k1+k2
=

N1−1
∑

n1=0

(

{

e−
2πi
N

n1k2

}

[

N2−1
∑

n2=0

e
− 2πi

N2
n2k2xN1n2+n1

])

e
− 2πi

N1
n1k1

(3)

where we have used the fact thate−2πin2k1 = 1 (for any
integersn2 andk1). Here, the outer sum is exactly a length-
N1 DFT of the(· · ·) terms, one for each value ofk2; and the
inner sum in[· · ·] is a length-N2 DFT, one for each value
of n1. The phase in the{· · · } is called the “twiddle factor”
(honest). Assuming thatN has small (bounded) prime fac-
tors, this algorithm requiresO(N log N) operations when
carried out recursively — the key savings coming from the
fact that we have exposed a repeated calculation: the[· · ·]
DFTs need only be carried outonce for all yk outputs.

For a givenN , there are many choices of factorizations
(e.g.12 = 3 ·4 and4 ·3 give a different sequence of compu-
tations). Moreover, the transposition from input to output
implies a data rearrangement process that can be accom-
plished in many ways. As a result, many different strate-
gies for evaluating the C-T algorithm have been proposed
(each with its own name), and the optimal approach is still
a matter of active research. Commonly, eitherN1 or N2 is
a small (bounded) constant factor, called theradix, and the
approach is called decimation in time (DIT) forN1 = radix
or frequency (DIF) forN2 = radix. Textbook examples
are typically radix-2 DIT (dividingxn into two interleaved
halves with each step), but serious implementations employ
more sophisticated strategies.

There are many other FFT algorithms and there are also
many different ways to view thesame algorithms. One fruit-
ful way is to view the DFT in terms of operations onpoly-
nomials. In particular, define a polynomialx(z) by

x(z) =
N−1
∑

n=0

xnzn. (4)

Then

yk = x(e−
2πi
N

k) = x(z) mod (z − e−
2πi
N

k), (5)

1

where x(z) mod u(z) (x(z) “modulo” u(z)) means
the remainder of dividing x(z) by u(z). Since u(z)
mod u(z) = 0, takingx(z) mod u(z) is equivalent to set-
tingu(z) = 0, which in this case means settingz = e−

2πi
N

k.
The DFT corresponds to computingx(z) mod (z −

e−
2πi
N

k) for all k = 0 . . .N − 1, which would takeO(N2)
operations if done directly. The key observation, from a
polynomial viewpoint, is that we can do this modulo opera-
tion recursively by combining the factors(z − e−

2πi
N

k). In
particular, it is easy to show thatx(z) mod u(z) = [x(z)
mod u(z)v(z)] mod u(z) for any u(z)and v(z). This
means that we can first computex(z) modulo theproduct
of the factors, and then recursively evaluate the remainder
by a recursive factorization of this product. But the prod-
uct
∏

k(z − e−
2πi
N

k) = zN − 1, since thee−
2πi
N

k are just
the N th roots of unity (solutions ofzN − 1 = 0). It fol-
lows that any recursive factorization ofzN −1 into N log N

bounded-degree factors gives us anO(N log N) FFT algo-
rithm! In particular, the radix-2 Cooley-Tukey algorithm is
equivalent to the recursive factorization (forN a power of
2): zN − a = (zN/2 − √

a)(zN/2 +
√

a), where we start
with a = 1 and end up witha = e−i 2πi

N
k.

Different recursive factorizations ofzN − 1 lead to dif-
ferent FFT algorithms, one of which you will examine for
homework. Many other FFT algorithms exist as well, from
the “prime-factor algorithm” (1958) that exploits the Chi-
nese remainder theorem forgcd(N1, N2) = 1, to FFT algo-
rithms that work forprime N , one of which we give below.

The core of the DFT is the constantωN = e−
2πi
N ; be-

cause this is a primitive root of unity (ωN
N = 1), any ex-

ponent ofωN is evaluatedmodulo N . That is,ωm
N = ωr

N

wherer is the remainder when we dividem by N (r = m

mod N). A great body of number theory has been de-
veloped around such “modular arithmetic”, and we can
exploit it to develop FFT algorithms different from C-T.
For example, Rader’s algorithm (1968) allows us to com-
puteO(N log N) FFTs of prime sizesN , by turning the
DFT into a cyclicconvolution of lengthN − 1, which in
turn is evaluated by (non-prime) FFTs. Givenan and bn

(n = 0, · · · , N − 1), their convolutioncn is defined by the
sum

cn =

N−1
∑

m=0

ambn−m, (6)

where the convolution iscyclic if the n − m sub-
script is “wrapped” periodically onto0, · · · , N − 1.
This operation is central to digital filtering, differential
equations, and other applications, and is evaluated in
O(N log N) time by the convolution theorem: cn =
inverse FFT(FFT(an) · FFT(bn)). Now, back to the FFT...

For primeN , there exists agenerator g of the multi-
plicative group moduloN : this means thatgp mod N for
p = 0, · · · , N − 2 produces alln = 1, · · · , N − 1 exactly
once (but not in order!). Thus, we can write all non-zeron

andk in the formn = gp andk = gN−1−q for somep and

q, and rewrite the DFT as

y0 =
N−1
∑

n=0

xn, (7)

yk 6=0 = ygN−1−q = x0 +

N−2
∑

p=0

ω
gp+N−1−q

N xgp , (8)

where (8) is exactly the cyclic convolution ofap = xgp

with bp = ω
gN−1−p

N . This convolution has non-prime length
N−1, and so we can evaluate it via the convolution theorem
with FFTs inO(N log N) time (except for some unusual
cases).

Further Reading

• D. N. Rockmore, “The FFT: An Algorithm the
Whole Family Can Use,”Comput. Sci. Eng. 2
(1), 60 (2000). Special issue on “top ten” algo-
rithms of century. See: http://tinyurl.com/3wjvk and
http://tinyurl.com/yvonp8

• “Fast Fourier transform,”Wikipedia: The Free Ency-
clopedia (http://tinyurl.com/5c6f3). Edited by SGJ for
correctness as of 10 Jan 2006 (along with subsidiary
articles on C-T and other specific algorithms).

• “The Fastest Fourier Transform in the West,” a free
FFT implementation obviously named by arrogant
MIT graduate students. http://www.fftw.org/

Homework Problems

Problem 1: Prove that equation (2) really is the inverse of
equation (1). Hint: subsitute (1) into (2), interchange the
order of the two sums, and sum the geometric series.
Problem 2: (a) Prove that forN a power of 2, we can recur-
sively factorizezN −1 into polynomials of the formzM −1
andz2M + azM +1 with a some real numbers and|a| ≤ 2,
for a decreasing sequence ofM all the way down toM = 1.
(The final quadratic factors forM = 1 can then be factored
into conjugate pairs of roots of unitye

2πi
N

k.) This gives an
FFT algorithm due to Bruun (1978), distinct from Cooley-
Tukey in that all of its multiplicative constants (a’s) arereal
numbers until the very last step.(b) Apply this algorithm to
write down the steps for a “Bruun” FFT of sizeN = 8, and
count the number of required real additions and multiplica-
tions (not counting operations forx-independent constants
like 2 ·

√
2 that can be precomputed, and not counting trivial

multiplications by±1 or ±i). Compare this to the mini-
mum known operation count of 56 total real additions and
multiplications forN = 8 (achieved by the “split-radix”
algorithm).

2

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

