
  

 

  
 

   

In the beginning (c. 1805):
Carl Friedrich Gauss 

trigonometric interpolation: 

generalizing work
of Clairaut (1754)
and Lagrange (1762) 

discrete Fourier transform (DFT):
(before Fourier) 



     

 

Gauss’ DFT notation: 
From “Theoria interpolationis methodo nova tractata” 

Kids: don’t try this at home! 



Gauss’ fast Fourier transform (FFT) 

how do we compute: ? 

— not directly: O(n2) operations … for Gauss, n=12      

  
   

 

    
   

  
 

Gauss’ insight: “Distribuamus hanc 
periodum primo in tres periodos
quaternorum terminorum.” 

= We first distribute this period
[n=12] into 3 periods of length 4 … 

Divide and conquer.
(any composite n) 



    
     

    
   

      

But how fast was it? 
“illam vero methodum calculi mechanici taedium magis minuere” 

= “truly, this method greatly reduces
the tedium of mechanical calculation” 

(For Gauss, being less boring was good enough.) 



  

       

 
 

     

two (of many) re-inventors:
Danielson and Lanczos (1942)

[ J. Franklin Inst. 233, 365–380 and 435–452] 

Given Fourier transform of density (X-ray scattering) find density: 

discrete sine transform (DST-1) = DFT of real, odd-symmetry 

sample
the spectrum
at n points: 

radius r 

…double sampling until density (DFT) converges… 



  

  

      
      

     

Gauss’ FFT in reverse: 
Danielson and Lanczos (1942)

[ J. Franklin Inst. 233, 365–380 and 435–452] 

“By a certain transformation process, it is from 
possible to double the number of ordinates O(n2) to ??? with only slightly more than double the labor.” 

64-point DST in only 140 minutes! 



   

   
  

 
  

    

 

  
 

 re-inventing Gauss (for the last time) [ Math. Comp. 19, 
297–301 ] Cooley and Tukey (1965) 

N = N1N2 
1d DFT of size N: 

= ~2d DFT of size N1 × N2 
(+ phase rotation by twiddle factors) 

= Recursive DFTs of sizes N1 and N2 

O(N2) O(N log N) 

n=2048, IBM 7094, 36-bit float: 1.2 seconds 
(~106 speedup vs. Dan./Lanc.) 



   

  

 

  

  

  

The “Cooley-Tukey” FFT Algorithm 

1d DFT of size N: 0 1 2 3 4 … 

N = N1N2 

n 
= ~2d DFT of size N1 × N2 

input re-indexing 
n = n1 + N1n2 

N2 

n2 

N1 
n1 
0 1 2 

3 4 … 
multiply by n 
“twiddle factors” 

transpose N1 
k1 0 

output re-indexing 
k = N2k1 + k2 

N2 k2 
1 2 3 4 … 

= contiguous 
first DFT columns, size N2 finally, DFT columns, size N1 

(non-contiguous) (non-contiguous) 



   
     

   

 

“Cooley-Tukey” FFT, in math 
Recall the definition of the DFT: 

()* 

+( = -)
./0 

!" = $ +(%",% where ( 

%&' 

Trick: if 1 = 1*1., re-index 2 = 2* +1*2. and 4 = 1.4* + 4.: 

(6)* (5)* 

!(5"67"5 
= $ $ +(%6(5"6+(%6"5+((6%5(5"6+((6%5"5,%67(6%5 

%6&' %5&' 
(6)* +(%66

"6+( 
(5)* +(5 

= ∑%6&' 
%6"5 ∑%5&' 

%5"5,%67(6%5 

size-N1 DFTs twiddles size-N2 DFTs 

… repeat recursively. 



 
     

    
    

      
   

   
      

 

Cooley–Tukey terminology 
• Usually N1 or N2 is small, called radix r 

– N1 is radix: “decimation in time” (DIT) 
– N2 is radix: “decimation in frequency” (DIF) 

• Size-r DFTs of radix: “butterflies” 
– Cooley & Tukey erroneously claimed r=3 “optimal”: 

they thought butterflies were Θ(r2) 
– In fact, ! ≈ # is optimal cache-oblivious 

• “Mixed-radix” uses different radices at different 
stages (different factors of n) 



   
 

        
 

      
          

   

    
 

    
  

Many other FFT algorithms 
• Prime-factor algorithm: ! = !#!$ where !# and !$ are co-

prime: re-indexing based on Chinese Remainder Theorem with
no twiddle factors. 

• Rader’s algorithm: for prime N, re-index using generator of
multiplicative group to get a convolution of size N–1, do via 
FFTs. 

• Bluestein’s algorithm: re-index using %& = −#
$ 
& − % $ + 

)
$
* + 

+
$
* 

to get convolution of size N, do via zero-padded FFTs. 
• Many others… 
• Specialized versions for real xn, real-symmetric/antisymmetric 
xn (DCTs and DSTs), etc. 



      

       
     

   

     

…but how do we make it faster? 

We (probably) cannot do better than Q(n log n). 
(the proof of this remains an open problem) 

[ unless we give up exactness ] 

We’re left with the “constant” factor… 



   

    

  
       

      
     

The Next 30 Years… 
Assume “time” 

= # multiplications
# multiplications + # additions (= flops) 

Winograd (1979): # multiplications = Q(n) 
(…realizable bound! … but costs too many additions) 

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[ unsurpassed until last 2007, another ~6% saved 

by Lundy/Van Buskirk and Johnson/Frigo ] 



Are arithmetic counts so important? 



   

    

  
       

      
     

    
  

The Next 30 Years… 
Assume “time” 

= # multiplications
# multiplications + # additions (= flops) 

Winograd (1979): # multiplications = Q(n) 
(…realizable bound! … but costs too many additions) 

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[ unsurpassed until last 2007, another ~6% saved] 

last 15+ years: flop count (varies by ~20%) 
no longer determines speed (varies by factor of ~10+) 



 

a basic question: 

If arithmetic no longer dominates,
what does? 



     

  

    

 

 

   
 

 
  

   
 

   
  

  
 

 

The Memory Hierarchy (not to scale) 

disk (out of core) / remote memory (parallel)
(terabytes) 

RAM (gigabytes) 

L2 cache (megabytes) 

L1 cache (10s of kilobytes) 

registers (~100) 

…what matters is not 
how much work you
do, but when and where 
you do it. 

the name of the game:
• do as much work as 

possible before
going out of cache 

…difficult for FFTs 
…many complications
…continually changing 



 
  

     
 

: 

The “Fastest Fourier Transform 
in the West” 

Steven G. Johnson, MIT Applied Mathematics 
Matteo Frigo, Oracle; formerly MIT LCS (CSAIL) 



   
      

    
  

    

  

What’s the fastest algorithm for _____?
(computer science = math + time = math + $) 

1 Find best asymptotic complexity
naïve DFT to FFT: O(n2) to O(n log n) 

2 Find best exact operation count? 

3 Find variant/implementation that runs fastest
hardware-dependent — unstable answer! 

Better to change the question… 



 

     A question with a more stable answer? 

What’s the smallest 
set of “simple” algorithmic steps 

whose compositions ~always 
span the ~fastest algorithm? 



    

  

    
  

     

 

 
 

  FFTW
the “Fastest 

Fourier Tranform 
in the West” 

• C library for real & complex FFTs (arbitrary size/dimensionality) 
(+ parallel versions for threads & MPI) 

• Computational kernels (80% of code) automatically generated 

• Self-optimizes for your hardware (picks best composition of steps) 
= portability + performance 

free software: http://www.fftw.org/ 

http://www.fftw.org


 
   

 

 

FFTW performance
power-of-two sizes, double precision 

833 MHz Alpha EV6 2 GHz PowerPC G5 

2 GHz AMD Opteron 500 MHz Ultrasparc IIe 



 
   

 

 
   
   

 
    

FFTW performance 
non-power-of-two sizes, double precision 

unusual: non-power-of-two sizes 833 MHz Alpha EV6 

receive as much optimization
as powers of two 

2 GHz AMD Opteron 

…because we 
let the code do the optimizing 



 
     

  

 
   

 
  

 

FFTW performance
double precision, 2.8GHz Pentium IV: 2-way SIMD (SSE2) 

powers of two 

exploiting CPU-specific 
SIMD instructions 

(rewriting the code)
is easy 

non-powers-of-two 

…because we 
let the code write itself 



 
    

   

  

 

 
  

 

Why is FFTW fast? 
FFTW implements many FFT algorithms: 

A planner picks the best composition (plan) 
by measuring the speed of different combinations. 

Three ideas: 

1 A recursive framework enhances locality. 

2 Computational kernels (codelets)
should be automatically generated. 

3 Determining the unit of composition is critical. 



    

  

   

FFTW is easy to use 
{ 

complex x[n]; 
plan p; 

p = plan_dft_1d(n, x, x, FORWARD, MEASURE); 
... 
execute(p); /* repeat as needed */ 
... 
destroy_plan(p); 

} 

Key fact: usually,
many transforms of same size

are required. 



 
    

   

  

 

  
 

Why is FFTW fast? 
FFTW implements many FFT algorithms: 

A planner picks the best composition (plan) 
by measuring the speed of different combinations. 

Three ideas: 

1 A recursive framework enhances locality. 

2 Computational kernels (codelets)
should be automatically generated. 

3 Determining the unit of composition is critical. 



 
       

  

     
  

    

  

    
  

  

  

 

Why is FFTW slow? 
1965 Cooley & Tukey, IBM 7094, 36-bit single precision:

size 2048 DFT in 1.2 seconds 

2003 FFTW3+SIMD, 2GHz Pentium-IV 64-bit double precision:
size 2048 DFT in 50 microseconds (24,000x speedup) 

(= 30% improvement per year) 
Moore’s prediction: (= doubles every ~30 months) ( 30 nanoseconds ) 

FFTs are hard: don’t get “peak” CPU speed
especially for large n, 

unlike e.g. dense matrix multiply 



  

 

  

  

  

Discontiguous Memory Access 

n = pq 
1d DFT of size n: 

= ~2d DFT of size p x q 

p 
multiply by n “twiddle factors” 

q 
transpose q 

p 
= contiguous 

first DFT columns, size q finally, DFT columns, size p 
(non-contiguous) (non-contiguous) 



  

 

   

  

    

    

  

Cooley-Tukey is Naturally Recursive 

Size 8 DFT 

p = 2 (radix 2) 

Size 4 DFT Size 4 DFT 

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT 

But traditional implementation is non-recursive, 
breadth-first traversal: 

log2 n passes over whole array 



      
    

  

   

  

    

    

  

     
      

Traditional cache solution: Blocking 

Size 8 DFT 

p = 2 (radix 2) 

Size 4 DFT Size 4 DFT 

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT 

breadth-first, but with blocks of size = cache 
optimal choice: radix = cache size 

radix >> 2 

…requires program specialized for cache size
…multiple levels of cache = multilevel blocking 



    

  

    

    

  

      
    

  
Recursive Divide & Conquer is Good

(depth-first traversal) [Singleton, 1967] 

Size 8 DFT 

Size 4 DFT Size 4 DFT 

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT 

p = 2 (radix 2) 

eventually small enough to fit in cache 
…no matter what size the cache is 



 
      

    
   

    

       

 

  
 

Cache Obliviousness 
• A cache-oblivious algorithm does not know the cache size 

— for many algorithms [Frigo 1999],
can be provably “big-O” optimal for any machine 
& for all levels of cache simultaneously 

… but this ignores e.g. constant factors, associativity, … 

cache-obliviousness is a good beginning, 
but is not the end of optimization 

we’ll see: FFTW combines both styles 
(breadth- and depth-first) with self-optimization 



 
    

   

   

 

 
  

Why is FFTW fast? 
FFTW implements many FFT algorithms: 

A planner picks the best composition (plan) 
by measuring the speed of different combinations. 

Three ideas: 

1 A recursive framework enhances locality. 

2 Computational kernels (codelets)
should be automatically generated. 

3 Determining the unit of composition is critical. 



        

   
    

   

  
    

   
   

   

The Codelet Generator 
a domain-specific FFT “compiler” 

• Generates fast hard-coded C for FFT of a given size 

Necessary to give the planner a 
large space of codelets to 

experiment with (any
factorization).

Exploits modern CPU
deep pipelines & large register sets. 

Allows easy experimentation with 
different optimizations & algorithms. 

…CPU-specific hacks (SIMD) feasible 

(& negates recursion overhead) 



 

 

  

   

        

 
  

   

  
 

  
  

The Codelet Generator 
written in Objective Caml [Leroy, 1998], an ML dialect 

Abstract FFT algorithm n 
Cooley-Tukey: n=pq, 

Prime-Factor: gcd(p,q) = 1, Symbolic graph (dag) 
Rader: n prime, … 

Simplifications 

(cache .EQ. registers) 
scheduling 

powerful enough 
to e.g. derive real-input FFT Optimal cache-oblivious 
from complex FFT algorithm 

and even find “new” algorithms 

Optimized C code (or other language) 



The Generator Finds Good/New FFTs 



   
  

Symbolic Algorithms are Easy
Cooley-Tukey in OCaml 



 

  

 

Simple Simplifications 

Well-known optimizations: 

Algebraic simplification, e.g. a + 0 = a 

Constant folding 

Common-subexpression elimination 



  
    

 

 
   

Symbolic Pattern Matching in OCaml 
The following actual code fragment is 
solely responsible for simplifying multiplications: 

stimesM = function 
| (Uminus a, b) -> stimesM (a, b) >>= suminusM 
| (a, Uminus b) -> stimesM (a, b) >>= suminusM 
| (Num a, Num b) -> snumM (Number.mul a b)
| (Num a, Times (Num b, c)) -> 

snumM (Number.mul a b) >>= fun x -> stimesM (x, c) 
| (Num a, b) when Number.is_zero a -> snumM Number.zero 
| (Num a, b) when Number.is_one a -> makeNode b 
| (Num a, b) when Number.is_mone a -> suminusM b 
| (a, b) when is_known_constant b && not (is_known_constant a) -> 

stimesM (b, a)
| (a, b) -> makeNode (Times (a, b)) 

(Common-subexpression elimination is implicit 
via “memoization” and monadic programming style.) 



 

  

 

 

  

     

Simple Simplifications 

Well-known optimizations: 

Algebraic simplification, e.g. a + 0 = a 

Constant folding 

Common-subexpression elimination 

FFT-specific optimizations: 

Network transposition (transpose + simplify + transpose) 

_________________ negative constants… 



 
 

     

   
  

 

A Quiz: Is One Faster? 
Both compute the same thing, and 

have the same number of arithmetic operations: 

a = 0.5 * b; a = 0.5 * b; 
c = 0.5 * d; c = -0.5 * d; 
e = 1.0 + a; e = 1.0 + a; 
f = 1.0 - c; f = 1.0 + c; 
Faster because no 

separate load for -0.5 

10–15% speedup 



Non-obvious transformations 
require experimentation 



  
     

  
  

  
  

 

   
   

Quiz 2: Which is Faster? 
accessing strided array

inside codelet (amid dense numeric code), nonsequential 

array[stride * i] array[strides[i]] 
using precomputed stride array: 

strides[i] = stride * i 

This is faster, of course! …namely, Intel Pentia: 
Except on brain-dead architectures… integer multiplication

conflicts with floating-point 

up to ~10–20% speedup 

(even better to bloat:
pregenerate various constant strides) 



   

 

Machine-specific hacks
are feasible 

if you just generate special code 

stride precomputation 
SIMD instructions (SSE, Altivec, 3dNow!) 

fused multiply-add instructions… 



The Generator Finds Good/New FFTs 



 
    

   

   

 

  
 

 

Why is FFTW fast? 
FFTW implements many FFT algorithms: 

A planner picks the best composition (plan) 
by measuring the speed of different combinations. 

Three ideas: 

1 A recursive framework enhances locality. 

2 Computational kernels (codelets)
should be automatically generated. 

3 Determining the unit of composition is critical. 



     
   

  

  
    

    

   

What does the planner compose? 
• The Cooley-Tukey algorithm presents many choices: 

— which factorization? what order? memory reshuffling? 

Find simple steps that combine without restriction 
to form many different algorithms. 

… steps to do WHAT? 

FFTW 1 (1997): steps solve out-of-place DFT of size n 



   

 

  
   

       

                
  

 
  

       

“Composable” Steps in FFTW 1 

SOLVE — Directly solve a small DFT by a codelet 

CT-FACTOR[r] — Radix-r Cooley-Tukey step = 
execute loop of r sub-problems of size n/r 

• Many algorithms difficult to express via simple steps. 

— e.g. expresses only depth-first recursion 
(loop is outside of sub-problem) 

— e.g. in-place without bit-reversal
requires combining

two CT steps (DIT + DIF) + transpose 



     
   

  

  
    

    

   

     

What does the planner compose? 
• The Cooley-Tukey algorithm presents many choices: 

— which factorization? what order? memory reshuffling? 

Find simple steps that combine without restriction 
to form many different algorithms. 

… steps to do WHAT? 

FFTW 1 (1997): steps solve out-of-place DFT of size n 

Steps cannot solve problems that cannot be expressed. 



     
   

  

  
    

 
      

   

   

What does the planner compose? 
• The Cooley-Tukey algorithm presents many choices: 

— which factorization? what order? memory reshuffling? 

Find simple steps that combine without restriction 
to form many different algorithms. 

… steps to do WHAT? 

FFTW 3 (2003): 
steps solve a problem, specified as a DFT(input/output, v,n): 

multi-dimensional “vector loops” v of multi-dimensional transforms n 

{sets of (size, input/output strides)} 



     

 

  
 

   
   

 
   

  

    

Some Composable Steps (out of ~16) 

SOLVE — Directly solve a small DFT by a codelet 

CT-FACTOR[r] — Radix-r Cooley-Tukey step = 
r (loop) sub-problems of size n/r 

(& recombine with size-r twiddle codelet) 

VECLOOP — Perform one vector loop
(can choose any loop, i.e. loop reordering) 

INDIRECT — DFT = copy + in-place DFT
(separates copy/reordering from DFT) 

TRANSPOSE — solve in-place m ´ n transpose 



  
  

   
   

   

  
 

     
     

Many Resulting “Algorithms” 
• INDIRECT + TRANSPOSE gives in-place DFTs, 

— bit-reversal = product of transpositions 
… no separate bit-reversal “pass”

[ Johnson (unrelated) & Burrus (1984) ] 

• VECLOOP can push topmost loop to “leaves” 
— “vector” FFT algorithm [ Swarztrauber (1987) ] 

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT, 
— erases iterative/recursive distinction 



  
     

   
   

   

  
 

     
     

Many Resulting “Algorithms” 
• INDIRECT + TRANSPOSE gives in-place DFTs, 

— bit-reversal = product of transpositions 
… no separate bit-reversal “pass”

[ Johnson (unrelated) & Burrus (1984) ] 

• VECLOOP can push topmost loop to “leaves” 
— “vector” FFT algorithm [ Swarztrauber (1987) ] 

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT, 
— erases iterative/recursive distinction 



 
 

 

 

 

    

Depth- vs. Breadth- First 
for size n = 30 = 3 ´ 5 ´ 2 

A “depth-first” plan:
CT-FACTOR[3] 

VECLOOP x3 
CT-FACTOR[2] 

SOLVE[2, 5] 

30 

10 10 10 

5 5 5 5 5 5 

A “breadth-first” plan:
CT-FACTOR[3]

CT-FACTOR[2] 
VECLOOP x3 

SOLVE[2, 5] 

30 

10 10 10 

5 5 5 5 5 5 

(Note: both are executed by explicit recursion.) 



  
  

   
   

   

    
 

     
     

Many Resulting “Algorithms” 
• INDIRECT + TRANSPOSE gives in-place DFTs, 

— bit-reversal = product of transpositions 
… no separate bit-reversal “pass”

[ Johnson (unrelated) & Burrus (1984) ] 

• VECLOOP can push topmost loop to “leaves” 
— “vector” FFT algorithm [ Swarztrauber (1987) ] 

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT, 
— erases iterative/recursive distinction 



 

 
   

In-place plan for size 214 = 16384 
(2 GHz PowerPC G5, double precision) 

CT-FACTOR[32]
CT-FACTOR[16] 

INDIRECT 
TRANSPOSE[32 ´ 32] x16 
SOLVE[512, 32] 

Radix-32 DIT + Radix-32 DIF = 2 loops = transpose 
… where leaf SOLVE ~ “radix” 32 x 1 



 
 

 

 

 
 

     

 
 

  

 

Out-of-place plan for size 219=524288 
(2GHz Pentium IV, double precision) 

CT-FACTOR[4] (buffered variant)
CT-FACTOR[32] (buffered variant) 

VECLOOP (reorder) x32 
CT-FACTOR[64] 

INDIRECT 
+ INDIRECT 

VECLOOP (reorder) VECLOOP (reorder) 

~2000 lines 
hard-coded C! 

x64 
(+ …) VECLOOP x4 

= COPY[64] 
huge improvements VECLOOP x4 for large 1d sizes SOLVE[64, 64] 

Unpredictable: (automated) experimentation is the only solution. 



    

        
   

    
   
   

   

     
    

      

Dynamic Programming
the assumption of “optimal substructure” 

Try all applicable steps: 

CT-FACTOR[2]: 2 DFT(8) DFT(16) = fastest of: CT-FACTOR[4]: 4 DFT(4) 

CT-FACTOR[2]: 2 DFT(4) 
DFT(8) = fastest of: CT-FACTOR[4]: 4 DFT(2) 

SOLVE[1,8] 

If exactly the same problem appears twice,
assume that we can re-use the plan. 

— i.e. ordering of plan speeds is assumed independent of context 



 
     

 

 
 

    

 
 

 

 
 

 
 

 

Planner Unpredictability
double-precision, power-of-two sizes, 2GHz PowerPC G5 

FFTW 3 
Classic strategy:
minimize op’s

fails badly 

another test: 
Use plan from:

another machine? 
e.g. Pentium-IV? heuristic: pick plan … lose 20–40% with fewest 

adds + multiplies + loads/stores 



    
     

 
    

 

    
  

  
    

We’ve Come a Long Way? 
• In the name of performance, computers have become

complex & unpredictable. 

• Optimization is hard: simple heuristics (e.g. fewest flops) 
no longer work. 

• One solution is to avoid the details, not embrace them: 
(Recursive) composition of simple modules 

+ feedback (self-optimization) 
High-level languages (not C) & code generation

are a powerful tool for high performance. 
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