

In the beginning (c. 1805):
Carl Friedrich Gauss

trigonometric interpolation:

generalizing work
of Clairaut (1754)
and Lagrange (1762)

discrete Fourier transform (DFT):
(before Fourier)

Gauss’ DFT notation:
From “Theoria interpolationis methodo nova tractata”

Kids: don’t try this at home!

Gauss’ fast Fourier transform (FFT)

how do we compute: ?

— not directly: O(n2) operations … for Gauss, n=12

Gauss’ insight: “Distribuamus hanc
periodum primo in tres periodos
quaternorum terminorum.”

= We first distribute this period
[n=12] into 3 periods of length 4 …

Divide and conquer.
(any composite n)

But how fast was it?
“illam vero methodum calculi mechanici taedium magis minuere”

= “truly, this method greatly reduces
the tedium of mechanical calculation”

(For Gauss, being less boring was good enough.)

two (of many) re-inventors:
Danielson and Lanczos (1942)

[J. Franklin Inst. 233, 365–380 and 435–452]

Given Fourier transform of density (X-ray scattering) find density:

discrete sine transform (DST-1) = DFT of real, odd-symmetry

sample
the spectrum
at n points:

radius r

…double sampling until density (DFT) converges…

Gauss’ FFT in reverse:
Danielson and Lanczos (1942)

[J. Franklin Inst. 233, 365–380 and 435–452]

“By a certain transformation process, it is from
possible to double the number of ordinates O(n2) to ??? with only slightly more than double the labor.”

64-point DST in only 140 minutes!

 re-inventing Gauss (for the last time) [Math. Comp. 19,
297–301] Cooley and Tukey (1965)

N = N1N2
1d DFT of size N:

= ~2d DFT of size N1 × N2
(+ phase rotation by twiddle factors)

= Recursive DFTs of sizes N1 and N2

O(N2) O(N log N)

n=2048, IBM 7094, 36-bit float: 1.2 seconds
(~106 speedup vs. Dan./Lanc.)

The “Cooley-Tukey” FFT Algorithm

1d DFT of size N: 0 1 2 3 4 …

N = N1N2

n
= ~2d DFT of size N1 × N2

input re-indexing
n = n1 + N1n2

N2

n2

N1
n1
0 1 2

3 4 …
multiply by n
“twiddle factors”

transpose N1
k1 0

output re-indexing
k = N2k1 + k2

N2 k2
1 2 3 4 …

= contiguous
first DFT columns, size N2 finally, DFT columns, size N1

(non-contiguous) (non-contiguous)

“Cooley-Tukey” FFT, in math
Recall the definition of the DFT:

()*

+(= -)
./0

!" = $ +(%",% where (

%&'

Trick: if 1 = 1*1., re-index 2 = 2* +1*2. and 4 = 1.4* + 4.:

(6)* (5)*

!(5"67"5
= $ $ +(%6(5"6+(%6"5+((6%5(5"6+((6%5"5,%67(6%5

%6&' %5&'
(6)* +(%66

"6+(
(5)* +(5

= ∑%6&'
%6"5 ∑%5&'

%5"5,%67(6%5

size-N1 DFTs twiddles size-N2 DFTs

… repeat recursively.

Cooley–Tukey terminology
• Usually N1 or N2 is small, called radix r

– N1 is radix: “decimation in time” (DIT)
– N2 is radix: “decimation in frequency” (DIF)

• Size-r DFTs of radix: “butterflies”
– Cooley & Tukey erroneously claimed r=3 “optimal”:

they thought butterflies were Θ(r2)
– In fact, ! ≈ # is optimal cache-oblivious

• “Mixed-radix” uses different radices at different
stages (different factors of n)

Many other FFT algorithms
• Prime-factor algorithm: ! = !#!$ where !# and !$ are co-

prime: re-indexing based on Chinese Remainder Theorem with
no twiddle factors.

• Rader’s algorithm: for prime N, re-index using generator of
multiplicative group to get a convolution of size N–1, do via
FFTs.

• Bluestein’s algorithm: re-index using %& = −#
$
& − % $ +

)
$
* +

+
$
*

to get convolution of size N, do via zero-padded FFTs.
• Many others…
• Specialized versions for real xn, real-symmetric/antisymmetric
xn (DCTs and DSTs), etc.

…but how do we make it faster?

We (probably) cannot do better than Q(n log n).
(the proof of this remains an open problem)

[unless we give up exactness]

We’re left with the “constant” factor…

The Next 30 Years…
Assume “time”

= # multiplications
multiplications + # additions (= flops)

Winograd (1979): # multiplications = Q(n)
(…realizable bound! … but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[unsurpassed until last 2007, another ~6% saved

by Lundy/Van Buskirk and Johnson/Frigo]

Are arithmetic counts so important?

The Next 30 Years…
Assume “time”

= # multiplications
multiplications + # additions (= flops)

Winograd (1979): # multiplications = Q(n)
(…realizable bound! … but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[unsurpassed until last 2007, another ~6% saved]

last 15+ years: flop count (varies by ~20%)
no longer determines speed (varies by factor of ~10+)

a basic question:

If arithmetic no longer dominates,
what does?

The Memory Hierarchy (not to scale)

disk (out of core) / remote memory (parallel)
(terabytes)

RAM (gigabytes)

L2 cache (megabytes)

L1 cache (10s of kilobytes)

registers (~100)

…what matters is not
how much work you
do, but when and where
you do it.

the name of the game:
• do as much work as

possible before
going out of cache

…difficult for FFTs
…many complications
…continually changing

:

The “Fastest Fourier Transform
in the West”

Steven G. Johnson, MIT Applied Mathematics
Matteo Frigo, Oracle; formerly MIT LCS (CSAIL)

What’s the fastest algorithm for _____?
(computer science = math + time = math + $)

1 Find best asymptotic complexity
naïve DFT to FFT: O(n2) to O(n log n)

2 Find best exact operation count?

3 Find variant/implementation that runs fastest
hardware-dependent — unstable answer!

Better to change the question…

 A question with a more stable answer?

What’s the smallest
set of “simple” algorithmic steps

whose compositions ~always
span the ~fastest algorithm?

 FFTW
the “Fastest

Fourier Tranform
in the West”

• C library for real & complex FFTs (arbitrary size/dimensionality)
(+ parallel versions for threads & MPI)

• Computational kernels (80% of code) automatically generated

• Self-optimizes for your hardware (picks best composition of steps)
= portability + performance

free software: http://www.fftw.org/

http://www.fftw.org

FFTW performance
power-of-two sizes, double precision

833 MHz Alpha EV6 2 GHz PowerPC G5

2 GHz AMD Opteron 500 MHz Ultrasparc IIe

FFTW performance
non-power-of-two sizes, double precision

unusual: non-power-of-two sizes 833 MHz Alpha EV6

receive as much optimization
as powers of two

2 GHz AMD Opteron

…because we
let the code do the optimizing

FFTW performance
double precision, 2.8GHz Pentium IV: 2-way SIMD (SSE2)

powers of two

exploiting CPU-specific
SIMD instructions

(rewriting the code)
is easy

non-powers-of-two

…because we
let the code write itself

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three ideas:

1 A recursive framework enhances locality.

2 Computational kernels (codelets)
should be automatically generated.

3 Determining the unit of composition is critical.

FFTW is easy to use
{

complex x[n];
plan p;

p = plan_dft_1d(n, x, x, FORWARD, MEASURE);
...
execute(p); /* repeat as needed */
...
destroy_plan(p);

}

Key fact: usually,
many transforms of same size

are required.

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three ideas:

1 A recursive framework enhances locality.

2 Computational kernels (codelets)
should be automatically generated.

3 Determining the unit of composition is critical.

Why is FFTW slow?
1965 Cooley & Tukey, IBM 7094, 36-bit single precision:

size 2048 DFT in 1.2 seconds

2003 FFTW3+SIMD, 2GHz Pentium-IV 64-bit double precision:
size 2048 DFT in 50 microseconds (24,000x speedup)

(= 30% improvement per year)
Moore’s prediction: (= doubles every ~30 months) (30 nanoseconds)

FFTs are hard: don’t get “peak” CPU speed
especially for large n,

unlike e.g. dense matrix multiply

Discontiguous Memory Access

n = pq
1d DFT of size n:

= ~2d DFT of size p x q

p
multiply by n “twiddle factors”

q
transpose q

p
= contiguous

first DFT columns, size q finally, DFT columns, size p
(non-contiguous) (non-contiguous)

Cooley-Tukey is Naturally Recursive

Size 8 DFT

p = 2 (radix 2)

Size 4 DFT Size 4 DFT

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

But traditional implementation is non-recursive,
breadth-first traversal:

log2 n passes over whole array

Traditional cache solution: Blocking

Size 8 DFT

p = 2 (radix 2)

Size 4 DFT Size 4 DFT

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

breadth-first, but with blocks of size = cache
optimal choice: radix = cache size

radix >> 2

…requires program specialized for cache size
…multiple levels of cache = multilevel blocking

Recursive Divide & Conquer is Good

(depth-first traversal) [Singleton, 1967]

Size 8 DFT

Size 4 DFT Size 4 DFT

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

p = 2 (radix 2)

eventually small enough to fit in cache
…no matter what size the cache is

Cache Obliviousness
• A cache-oblivious algorithm does not know the cache size

— for many algorithms [Frigo 1999],
can be provably “big-O” optimal for any machine
& for all levels of cache simultaneously

… but this ignores e.g. constant factors, associativity, …

cache-obliviousness is a good beginning,
but is not the end of optimization

we’ll see: FFTW combines both styles
(breadth- and depth-first) with self-optimization

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three ideas:

1 A recursive framework enhances locality.

2 Computational kernels (codelets)
should be automatically generated.

3 Determining the unit of composition is critical.

The Codelet Generator
a domain-specific FFT “compiler”

• Generates fast hard-coded C for FFT of a given size

Necessary to give the planner a
large space of codelets to

experiment with (any
factorization).

Exploits modern CPU
deep pipelines & large register sets.

Allows easy experimentation with
different optimizations & algorithms.

…CPU-specific hacks (SIMD) feasible

(& negates recursion overhead)

The Codelet Generator
written in Objective Caml [Leroy, 1998], an ML dialect

Abstract FFT algorithm n
Cooley-Tukey: n=pq,

Prime-Factor: gcd(p,q) = 1, Symbolic graph (dag)
Rader: n prime, …

Simplifications

(cache .EQ. registers)
scheduling

powerful enough
to e.g. derive real-input FFT Optimal cache-oblivious
from complex FFT algorithm

and even find “new” algorithms

Optimized C code (or other language)

The Generator Finds Good/New FFTs

Symbolic Algorithms are Easy
Cooley-Tukey in OCaml

Simple Simplifications

Well-known optimizations:

Algebraic simplification, e.g. a + 0 = a

Constant folding

Common-subexpression elimination

Symbolic Pattern Matching in OCaml
The following actual code fragment is
solely responsible for simplifying multiplications:

stimesM = function
| (Uminus a, b) -> stimesM (a, b) >>= suminusM
| (a, Uminus b) -> stimesM (a, b) >>= suminusM
| (Num a, Num b) -> snumM (Number.mul a b)
| (Num a, Times (Num b, c)) ->

snumM (Number.mul a b) >>= fun x -> stimesM (x, c)
| (Num a, b) when Number.is_zero a -> snumM Number.zero
| (Num a, b) when Number.is_one a -> makeNode b
| (Num a, b) when Number.is_mone a -> suminusM b
| (a, b) when is_known_constant b && not (is_known_constant a) ->

stimesM (b, a)
| (a, b) -> makeNode (Times (a, b))

(Common-subexpression elimination is implicit
via “memoization” and monadic programming style.)

Simple Simplifications

Well-known optimizations:

Algebraic simplification, e.g. a + 0 = a

Constant folding

Common-subexpression elimination

FFT-specific optimizations:

Network transposition (transpose + simplify + transpose)

_________________ negative constants…

A Quiz: Is One Faster?
Both compute the same thing, and

have the same number of arithmetic operations:

a = 0.5 * b; a = 0.5 * b;
c = 0.5 * d; c = -0.5 * d;
e = 1.0 + a; e = 1.0 + a;
f = 1.0 - c; f = 1.0 + c;
Faster because no

separate load for -0.5

10–15% speedup

Non-obvious transformations
require experimentation

Quiz 2: Which is Faster?
accessing strided array

inside codelet (amid dense numeric code), nonsequential

array[stride * i] array[strides[i]]
using precomputed stride array:

strides[i] = stride * i

This is faster, of course! …namely, Intel Pentia:
Except on brain-dead architectures… integer multiplication

conflicts with floating-point

up to ~10–20% speedup

(even better to bloat:
pregenerate various constant strides)

Machine-specific hacks
are feasible

if you just generate special code

stride precomputation
SIMD instructions (SSE, Altivec, 3dNow!)

fused multiply-add instructions…

The Generator Finds Good/New FFTs

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three ideas:

1 A recursive framework enhances locality.

2 Computational kernels (codelets)
should be automatically generated.

3 Determining the unit of composition is critical.

What does the planner compose?
• The Cooley-Tukey algorithm presents many choices:

— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

… steps to do WHAT?

FFTW 1 (1997): steps solve out-of-place DFT of size n

“Composable” Steps in FFTW 1

SOLVE — Directly solve a small DFT by a codelet

CT-FACTOR[r] — Radix-r Cooley-Tukey step =
execute loop of r sub-problems of size n/r

• Many algorithms difficult to express via simple steps.

— e.g. expresses only depth-first recursion
(loop is outside of sub-problem)

— e.g. in-place without bit-reversal
requires combining

two CT steps (DIT + DIF) + transpose

What does the planner compose?
• The Cooley-Tukey algorithm presents many choices:

— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

… steps to do WHAT?

FFTW 1 (1997): steps solve out-of-place DFT of size n

Steps cannot solve problems that cannot be expressed.

What does the planner compose?
• The Cooley-Tukey algorithm presents many choices:

— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

… steps to do WHAT?

FFTW 3 (2003):
steps solve a problem, specified as a DFT(input/output, v,n):

multi-dimensional “vector loops” v of multi-dimensional transforms n

{sets of (size, input/output strides)}

Some Composable Steps (out of ~16)

SOLVE — Directly solve a small DFT by a codelet

CT-FACTOR[r] — Radix-r Cooley-Tukey step =
r (loop) sub-problems of size n/r

(& recombine with size-r twiddle codelet)

VECLOOP — Perform one vector loop
(can choose any loop, i.e. loop reordering)

INDIRECT — DFT = copy + in-place DFT
(separates copy/reordering from DFT)

TRANSPOSE — solve in-place m ´ n transpose

Many Resulting “Algorithms”
• INDIRECT + TRANSPOSE gives in-place DFTs,

— bit-reversal = product of transpositions
… no separate bit-reversal “pass”

[Johnson (unrelated) & Burrus (1984)]

• VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987)]

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases iterative/recursive distinction

Many Resulting “Algorithms”
• INDIRECT + TRANSPOSE gives in-place DFTs,

— bit-reversal = product of transpositions
… no separate bit-reversal “pass”

[Johnson (unrelated) & Burrus (1984)]

• VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987)]

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases iterative/recursive distinction

Depth- vs. Breadth- First
for size n = 30 = 3 ´ 5 ´ 2

A “depth-first” plan:
CT-FACTOR[3]

VECLOOP x3
CT-FACTOR[2]

SOLVE[2, 5]

30

10 10 10

5 5 5 5 5 5

A “breadth-first” plan:
CT-FACTOR[3]

CT-FACTOR[2]
VECLOOP x3

SOLVE[2, 5]

30

10 10 10

5 5 5 5 5 5

(Note: both are executed by explicit recursion.)

Many Resulting “Algorithms”
• INDIRECT + TRANSPOSE gives in-place DFTs,

— bit-reversal = product of transpositions
… no separate bit-reversal “pass”

[Johnson (unrelated) & Burrus (1984)]

• VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987)]

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases iterative/recursive distinction

In-place plan for size 214 = 16384
(2 GHz PowerPC G5, double precision)

CT-FACTOR[32]
CT-FACTOR[16]

INDIRECT
TRANSPOSE[32 ´ 32] x16
SOLVE[512, 32]

Radix-32 DIT + Radix-32 DIF = 2 loops = transpose
… where leaf SOLVE ~ “radix” 32 x 1

Out-of-place plan for size 219=524288
(2GHz Pentium IV, double precision)

CT-FACTOR[4] (buffered variant)
CT-FACTOR[32] (buffered variant)

VECLOOP (reorder) x32
CT-FACTOR[64]

INDIRECT
+ INDIRECT

VECLOOP (reorder) VECLOOP (reorder)

~2000 lines
hard-coded C!

x64
(+ …) VECLOOP x4

= COPY[64]
huge improvements VECLOOP x4 for large 1d sizes SOLVE[64, 64]

Unpredictable: (automated) experimentation is the only solution.

Dynamic Programming
the assumption of “optimal substructure”

Try all applicable steps:

CT-FACTOR[2]: 2 DFT(8) DFT(16) = fastest of: CT-FACTOR[4]: 4 DFT(4)

CT-FACTOR[2]: 2 DFT(4)
DFT(8) = fastest of: CT-FACTOR[4]: 4 DFT(2)

SOLVE[1,8]

If exactly the same problem appears twice,
assume that we can re-use the plan.

— i.e. ordering of plan speeds is assumed independent of context

Planner Unpredictability
double-precision, power-of-two sizes, 2GHz PowerPC G5

FFTW 3
Classic strategy:
minimize op’s

fails badly

another test:
Use plan from:

another machine?
e.g. Pentium-IV? heuristic: pick plan … lose 20–40% with fewest

adds + multiplies + loads/stores

We’ve Come a Long Way?
• In the name of performance, computers have become

complex & unpredictable.

• Optimization is hard: simple heuristics (e.g. fewest flops)
no longer work.

• One solution is to avoid the details, not embrace them:
(Recursive) composition of simple modules

+ feedback (self-optimization)
High-level languages (not C) & code generation

are a powerful tool for high performance.

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover2.pdf
	Blank Page

