In the beginning (c. 1805):
Carl Friedrich Gauss

trigonometric interpolation:

generalizing work

of Clairaut (1754)
and Lagrange (1762)

discrete Fourier transform (DFT):
(before Fourier)

Gauss’ DFT notation:

From “Theoria interpolationis methodo nova tractata”

Kids: don’t try this at home!

Gauss’ fast Fourier transform (FFT)

how do we compute: ?

— not directly: O(n?) operations ... for Gauss, n=12

Gauss’ insight: “Distribuamus hanc
periodum primo in tres periodos
quaternorum terminorum.”

= We first distribute this period
[n=12] into 3 periods of length 4 ...

Divide and conquer.
(any composite n)

But how fast was it?

“illam vero methodum calculi mechanici taedium magis minuere”

= “truly, this method greatly reduces
the tedium of mechanical calculation”

(For Gauss, being less boring was good enough.)

two (of many) re-inventors:

Danielson and Lanczos (1942)

| J. Franklin Inst. 233, 365-380 and 435-452]

Given Fourier transform of density (X-ray scattering) find density:

discrete sine transform (DST-1) = DFT of real, odd-symmetry

sample
the spectrum
at n points:

radius r

...double sampling until density (DFT) converges...

Gauss’ FFT in reverse:

Danielson and Lanczos (1942)

| J. Franklin Inst. 233, 365-380 and 435-452]

“By a certain transformation process, it 1s
possible to double the number of ordinates
with only slightly more than double the labor.”

from
O(n?) to 777

64-point DST 1n only 140 minutes!

re-inventing Gauss (for the last time) [Math. Comp. 19,

Cooley and Tukey (1965) ="

N:N]NZ

1d DFT of size NV:

= ~2d DFT of size N] X Nz

(+ phase rotation by twiddle factors)
= Recursive DFTs of sizes N, and N,

O(M\2) - O(N log N)

n=2048, IBM 7094, 36-bit float: 1.2 seconds
(~10° speedup vs. Dan./Lanc.)

The “Cooley-Tukey” FFT Algorithm

1d DFT of size NV:

N=N,N,

n

= ~2d DFT of size N; x N,

2 4 »
J T L

%

— = contiguous

[ranspose

first DFT columns, size N,

(non-contiguous)

N,
ny—s /\
0 multiply by n

“twiddle factors”

N,

ky

l

input re-indexing
n=n; + Nn,

output re-indexing

k:Nzk] +k2

N,

ky—

finally, DFT columns, size N,

(non-contiguous)

“Cooley-Tukey” FFT, in math

Recall the definition of the DFT:
_2ml
Vi = 2 wikx, where wy=e N

Trick: if N = N{N,,re-indexn =n; + Nyn, and k = N, k; + k:

Ni—1Np—1

TllNzkl Tllkz Nlnzkz
YNyki+ky, = Z Z Wy Xng+Nqn,

OTLZ

ZNl—l Tllkl Tllkz (ZNZ—l lekz)
n1=0 N1 n,=0 N2 xn1+N1n2

size-N; DFTs twiddles size-N, DFTs

.. repeat recursively.

Cooley—Tukey terminology

Usually N, or N, 1s small, called radix r
— N, 1s radix: “decimation in time” (DIT)
— N, 1s radix: “decimation in frequency” (DIF)
Size-r DFTs of radix: “butterflies”

— Cooley & Tukey erroneously claimed r=3 “optimal’:
they thought butterflies were O(r?)

— In fact, r = v/N is optimal cache-oblivious

“Mixed-radix” uses different radices at different
stages (different factors of n)

Many other FFT algorithms

Prime-factor algorithm: N = N; N, where N; and N, are co-
prime: re-indexing based on Chinese Remainder Theorem with
no twiddle factors.

Rader’s algorithm: for prime N, re-index using generator of
multiplicative group to get a convolution of size N—1, do via
FFTs.

Bluestein’s algorithm: re-index using nk = — % (k—n)* +
2 2
n? + k? to get convolution of size N, do via zero-padded FFTs.

Many others...

Specialized versions for real x,, real-symmetric/antisymmetric
x, (DCTs and DSTs), etc.

...but how do we make it faster?

We (probably) cannot do better than ®(n log n).

(the proof of this remains an open problem)

[unless we give up exactness |

We’re left with the “constant’ factor...

The Next 30 Years...

Assume “time”

PERTI

multiplications + # additions (= tlops)

Winograd (1979): # multiplications = ®(n)
(...realizable bound! ... but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops

[unsurpassed until last 2007, another ~6% saved
by Lundy/Van Buskirk and Johnson/Frigo]

Are arithmetic counts so important?

The Next 30 Years...

Assume “time”

PERTI

multiplications + # additions (= tlops)

Winograd (1979): # multiplications = ®(n)
(...realizable bound! ... but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[unsurpassed until last 2007, another ~6% saved]

last 15+ years: flop count (varies by ~20%)
no longer determines speed (varies by factor of ~10+)

a basic question:

It arithmetic no longer dominates,
what does?

The Memory Hierarchy (not to scale)

disk (out of core) / remote memory (parallel) ...what matters is not

(terabytes) how much work you
do, but when and where
RAM (gigabytes) you do it.

the name of the game:

* do as much work as
possible before
going out of cache

registers (~100)

...difficult for FFTs
...many complications

...continually changing

FFTWV

The “Fastest Fourier Transform
In the West”

Steven G. Johnson, MIT Applied Mathematics
Matteo Frigo, Oracle; formerly MIT LCS (CSAIL)

What'’s the fastest algorithtn tor

(computer science = math $Aime = math + §)

(1) Find best asymptotic complexity
naive DFT to FFT: O(n?) to O(n log n)

° °
= ava ava) AN aVa AN a a a
\ [4 U |J Ui U J U

(3) Find vapiant/implementation that runs fastest
Hfardware-dependent — unstable answer!

Better to change the question...

A question with a more stable answer?

What’s the smallest
set of “simple” algorithmic steps
whose compositions ~always
span the ~fastest algorithm?

the “Fastest
Fourier Tranform
in the West”

e C library for real & complex FFTs (arbitrary size/dimensionality)
(+ parallel versions for threads & MPI)

» Computational kernels (80% of code) automatically generated

 Self-optimizes for your hardware (picks best composition of steps)
= portability + performance

free software:| http://www.fftw.org/

http://www.fftw.org

speed (mflops)

speed (mflops)

2500

1500

500

FEFTW performance

power-of-two sizes, double precision

833 MHz Alpha EV6

L N~ N L = D e ®
[N Y T =] E Q =
[=5) N N () O O

= oo

+R€91

89.T€

9€£6S9

LOTET
+129C

C

o—a fitw3 out-of-place

« o fitw3 in-place
1 coura-sg

st cxml

. green
emayer
sciport

= mpfun90

2 bloodworth

kissfit

harm

o——=o gsl-mixed-radix

rmayer-buneman3
dfftpack
numutils
monnier

=--n esrift
*--% mixfft
+—+ cross

jmfftc
valkenburg

e « o fitw3in-place
o—e fitw3 out-of-place
[3—f) ooura-sg
Laped o]
~—e green
% harm
o—o arprec
dfftpack
rmayer-lookup
sciport
o0 bloodworth
= = kissfft
fxt-tht
numutils
monnier
- -& mixttt
» m mpfun77
+—+ cross
w--m esrfft
fxt-matrixfit
jmiffte
valkenburg
(] WO o~ N =) e e o~ Wy o~ D
ra-&-um»—-ogO»—-oermo
[= 3 ST~ O o W o0 o= @
£ N o W O —
&5 0080 ov E
]

4

3

3

(]

speed (mflops)
(3]

speed (mflops)

2 GHz PowerPC G5

000 a 3
o—a fftw3 out-of-place
® « o fftw3 in-place

500 e
* « #» vdspin-place
= vdsp out-of -place
=—m ooura-sgf

000 dfftpack

sciport
% harm

500 &8 bloodworth
G——o arprec
— — kissfft

000 numutils

monnier
+—+ cross
=--u egrfft

500 *--% mixfft

jmfftc
valkenburg

000

500¢

N e =W N L = D 0= W~ N
.)-J-Mm,—-OEO.—-orJLnL.JO\
[= N SR~ C v W O o= R
= 0 N o W O =
J-mo\lt
[}

e « o fitw3 in-place
o—a fftw3 out-of-place
»—® ooura-sgf
e green
S sun pert
— fite

emayer

dfftpack
% harm
o—o arprec
& --2 mpfun90
monnier
kissftt
sciport

o bloodworth
= --u esifit
* mixfft

numutils
#——+ CrOSS

valkenburg

jmffte

FEFTW performance

non-power-of-two sizes, double precision

unusual: non-power-of-two sizes 833 MHz Alpha EV6
receive as much optimization w S
as powers of two - e

speed (mflops)
(o)
3

2 GHz AMD Opteron .

2500

o—ae fitw3 out-of-place 200
a
100
0
PR L= 8RR 3E S 3 2% s 9o a
—
2 58 £ 8 ¥ S o O
©c O uw oo O O
CAOOd

speed (mflops

...because we
let the code do the optimizing

4000

3500

3000

[S9]
93
[=}
o

speed (mflops)
ro
S
=)

1500

1000

- ba
ra + (=] — (9]
(o))

FEFTW performance

double precision, 2.8GHz Pentium IV: 2-way SIMD (SSE2)

powers of two

(oA
wn
wn
(%]
(o))

Lo S B e S B S =< B OV

[R N =] E S = O N
(=7 B N S T O O G - —
+ o N N o
+~ @ ‘\IJ

...because we
let the code write itself

o—a fftw3 out-of-place
e « o fftw3 in-place

» + » intel-mkl-dftiin-place

G= © intel-mkl-f

O] intel-mkl-dfti out-of -place

3£ ooura-sg
— ffle
dfftpack
% harm
. green
= = kissfft
sciport
G0 arprec
monnier
08 bloodworth
numutils
= = mpfun77
rmayer-simple
e—=o gsl-mixed-radix
»--n esfft
®--# mixfft
+—+ Cross
jmfftc
valkenburg

speed (mflops)

3000

2500

1500{"

1000

500

O = = = N W0 o= N W o= = = N =]
L = ooo.—-gs»s\lo\lu-o

@ O (o N S° R VY B = B o V)

©C O U o © O w

mood

exploiting CPU-specific

SIMD instructions
(rewriting the code)

1S easy

non-powers-of-two

o—a fitw3 out-of-place
e « o fitw3in-place
=) intel-mkl-dfti out-of-place

dfftpack

= « = intel-mkl-dfti in-place

fite
monnier

- -# mixfft
oo gsl-mixed-radix

jmftte
numutils
valkenburg

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition 1s critical.

FEFTW 1s easy to use

complex x[n];
plan p;

p = plan dft 1d(n, x, x, FORWARD, MEASURE);

execute(p); /* repeatas needed */

destroy plan(p); \\\\

Key fact: usually,
many transforms of same size
are required.

Why is FFTW fast?

FFTW implements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition is critical.

Why is FFTW slow?

1965 Cooley & Tukey, IBM 7094, 36-bit single precision:
size 2048 DFT 1n 1.2 seconds

2003 FFTW3+SIMD, 2GHz Pentium-IV 64-bit double precision:
size 2048 DFT 1n 50 microseconds (24,000x speedup)

(= 30% improvement per year)

Moore’s prediction:) (= doubles every ~30 months)
30 nanoseconds

FFTs are hard: don’t get “peak” CPU speed
especially for large n,
unlike e.g. dense matrix multiply

Discontiguous Memory Access

n=pq

1d DFT of size n:

=~2d DFT of s1ze p x g

] /\
: multiply by n “twiddle factors”

[ranspose q

P

— = contiguous

first DFT columns, size g finally, DFT columns, size p
(non-contiguous) (non-contiguous)

Cooley-Tukey 1s Naturally Recursive

Size 8 DFT

/9 = 2 (radix 2\

Size 4 DFT Size 4 DFT

SN N

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

But traditional implementation 1s non-recursive,
breadth-first traversal:

log, n passes over whole array

Traditional cache solution: Blocking

Size 8 DFT

/) = 2 (radix 2\

Size 4 DFT Size 4 DFT

/NN

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

breadth-first, but with blocks of size = cache
optimal choice: radix = cache size
radix >> 2

...requires program specialized for cache size
...multiple levels of cache = multilevel blocking

Recursive Divide & Conquer 1s Good
(depth-first traversal) [Singleton, 1967]

Size 4 DFT

\

Size 2 DFT

eventually small enough to fit in cache
...no matter what size the cache 1s

Cache Obliviousness

A cache-oblivious algorithm does not know the cache size
— for many algorithms [Frigo 1999],
can be provably “big-O” optimal for any machine
& for all levels of cache simultaneously

... but this ignores e.g. constant factors, associativity, ...

cache-obliviousness 1s a good beginning,
but 1s not the end of optimization

we’ll see: FEFTW combines both styles
(breadth- and depth-first) with self-optimization

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition is critical.

The Codelet Generator

a domain-specific FFT “compiler”

* Generates fast hard-coded C for FFT of a given size

Necessary to give the planner a
large space of codelets to
experiment with (any
factorization).

Exploits modern CPU
deep pipelines & large register sets.

Allows easy experimentation with
different optimizations & algorithms.

...CPU-specitic hacks (SIMD) feasible

(& negates recursion overhead)

The Codelet Generator

written in Objective Caml [Leroy, 1998], an ML dialect

Abstract FFT algorithm "
Cooley-Tukey: n=pq,
Prime-Factor: ged(p.g) = 1, Symbolic graph (dag)
Rader: n prime, ... /

Simplifications
powerful enough

to e.g. derive real-input FFT Optimal cache-oblivious
from complex FFT algorithm scheduling

and even find “new” algorithms :
. (cache .EQ. registers)

Optimized C code (or other language)

The Generator Finds Good/New FFTs

n | FFTW (adds+mults) literature (adds+mults)
complex ”
13 176 + 68 = 244 172+ 90 =262 [LCT93]
188 4+ 40 = 228 [SB96!
15 156 + 56 = 212 1624+ 50 =212 [BP85]
162436 = 198 [BP8S5]
64| 9124248 =1160 | 964+ 196 = 1160 [Yavne68]
real]
15 64 + 25 = 89 67+25 =92 [HBI84]
| 67+17 =84 [STHBS87]
64| 394+ 124 =518 420+ 98 =518 [SJHB87]
real symmetric (even)
16 2%+ 9 = 35 30+5=235 [Duhamel86]
64 172 4+ 67 = 239 190 + 49 =239 [Duhamel86] |

——

Symbolic Algorithms are Easy

Cooley-Tukey in OCaml
DSP book:

n—1

§ . \ - & Ji J2my
l/,\- o 'l }w?) T / 3 A | -7 y VA (A i
. 4 o g d ' &

,7(] _ () 11=U

- -

where n = pg and k = £y + qk.

OCaml code:
let cooley_tukey n p q X

let inner j2 = fftgen q
(fone §1 => x (p * jl + 3J2)) in

let twiddle k1 j2 =
(omega n (j2 * k1)) @* (inner j2 k1) in

let outer k1 = fftgen p (twiddle k1) in
(fun k —> outer (k mod q) (k / q))

Simple Simplifications

Well-known optimizations:
Algebraic simplification, e.g.a+0=a

Constant folding

Common-subexpression elimination

Symbolic Pattern Matching in OCaml

The following actual code fragment 1s
solely responsible for simplifying multiplications:

stimesM = function

(Uminus a, b) -> stimesM (a, b) >>= suminusM
(a, Uminus b) -> stimesM (a, b) >>= suminusM
(Num a, Num b) -> snumM (Number.mul a b)
(Num a, Times (Num b, c)) ->
snumM (Number.mul a b) >>= fun x -> stimesM (x, cC)
(Num a, b) when Number.is zero a -> snumM Number.zero
(Num a, b) when Number.is one a -> makeNode b
(Num a, b) when Number.is mone a -> suminusM b
(a, b) when is known constant b && not (is_known constant a) ->
stimesM (b, a)
(a, b) -> makeNode (Times (a, b))

(Common-subexpression elimination 1s implicit
via “‘memoization” and monadic programming style.)

Simple Simplifications

Well-known optimizations:
Algebraic simplification, e.g.a+0=a

Constant folding

Common-subexpression elimination

FFT-specific optimizations:
Network transposition (transpose + simplify + transpose)

negative constants...

A Quiz: Is One Faster?

Both compute the same thing, and
have the same number of arithmetic operations:

a = 0.5 * b; a = 0.5 * b;
c = 0.5 * d; c = -0.5 * d;
e =1.0 + a; e =1.0 + a;
f=1.0 - c; f =1.0 + c;

Faster because no
separate load for -0.5

10—15% speedup

Non-obvious transformations
require experimentation

Quiz 2: Which 1s Faster?

accessing strided array
inside codelet (amid dense numeric code), nonsequential

array[stride * 1] array[strides[i]]
% using precomputed stride array:
strides[i] = stride * 1
This 1s faster, of course! ...namely, Intel Pentia:
Except on brain-dead architectures... integer multiplication

conflicts with floating-point

up to ~10-20% speedup

(even better to bloat:
pregenerate various constant strides)

Machine-specific hacks
are feasible
if you just generate special code

stride precomputation
SIMD 1nstructions (SSE, Altivec, 3dNow!)

fused multiply-add instructions...

The Generator Finds Good/New FFTs

n | FFTW (adds+mults) literature (adds+mults)
complex ”
13 176 + 68 = 244 172+ 90 =262 [LCT93]
188 4+ 40 = 228 [SB96!
15 156 + 56 = 212 1624+ 50 =212 [BP85]
162436 = 198 [BP8S5]
64| 9124248 =1160 | 964+ 196 = 1160 [Yavne68]
real]
15 64 + 25 = 89 67+25 =92 [HBI84]
| 67+17 =84 [STHBS87]
64| 394+ 124 =518 420+ 98 =518 [SJHB87]
real symmetric (even)
16 2%+ 9 = 35 30+5=235 [Duhamel86]
64 172 4+ 67 = 239 190 + 49 =239 [Duhamel86] |

——

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition 1s critical.

What does the planner compose?

* The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 1 (1997): steps solve out-of-place DFT of size n

“Composable” Steps in FFTW 1

— Directly solve a small DFT by a codelet

[r] — Radix-r Cooley-Tukey step =
execute loop of r sub-problems of size n/r

x Many algorithms difficult to express via simple steps.

— e.g. expresses only depth-first recursion
(loop 1s outside of sub-problem)

— e.g2. 1n-place without bit-reversal
requires combining
two CT steps (DIT + DIF) + transpose

What does the planner compose?

* The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 1 (1997): steps solve out-of-place DFT of size n

Steps cannot solve problems that cannot be expressed.

What does the planner compose?

* The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 3 (2003):

steps solve a problem, specitied as a DFT(input/output, v n):
multi-dimensional “vector loops” v of multi-dimensional transforms n

\ _—

{sets of (size, input/output strides)}

Some Composable Steps (out of ~16)

— Directly solve a small DFT by a codelet

|7] — Radix-r Cooley-Tukey step =
r (loop) sub-problems of size n/r
(& recombine with size-r twiddle codelet)

— Perform one vector loop
(can choose any loop, 1.e. loop reordering)

— DFT = copy + in-place DFT
(separates copy/reordering from DFT)

— solve in-place m x n transpose

Many Resulting “Algorithms™

. + gives in-place DFTs,
— bit-reversal = product of transpositions

... o separate bit-reversal “pass”
[Johnson (unrelated) & Burrus (1984)]

. can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987) |

. then (s) gives “breadth-first” FFT,
— erases 1terative/recursive distinction

Many Resulting “Algorithms”™

e INDIRECT + TRANSPOSE gives in-place DFTs,
— bit-reversal = product of transpositions

... o separate bit-reversal “pass”
[Johnson (unrelated) & Burrus (1984)]

e VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987) |

. then (s) gives “breadth-first” FFT,
— erases 1terative/recursive distinction

Depth- vs. Breadth- First
forsizen=30=3 x5 x?2

A “depth-first” plan:
3
X3
2

[2, 5]

A “breadth-first” plan:
3

2
X3
[2, 5]

(Note: both are executed by explicit recursion.)

Many Resulting “Algorithms”™

. + gives in-place DFTs,
— bit-reversal = product of transpositions

... o separate bit-reversal “pass”
[Johnson (unrelated) & Burrus (1984)]

e VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987) |

* CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases 1terative/recursive distinction

In-place plan for size 2'*= 16384
(2 GHz PowerPC G5, double precision)

— 32
16

32 x 32 x16
512, 32]

Radix-32 DIT + Radix-32 DIF = 2 loops = transpose

... where leaf ~“radix” 32 x 1

Out-of-place plan for size 2'"=524288
(2GHz Pentium IV, double precision)

4 (buffered variant)
32 (buffered variant)

x32
64
INDIRECT
+
VECLOOP (reorder) x64
(+...) x4
. [64]
huge i1mprovements
for large 1d sizes X4
[64, 64]

Unpredictable: (automated) experimentation is the only solution.

Dynamic Programming

the assumption of “optimal substructure”

Try all applicable steps:

CT-FACTOR[2]: 2 DFT(8)

DFT(16) = fastest of: CT-FACTOR[4]: 4

CT-FACTOR]|2]: 2
DFT(8) = fastestof: CT-FACTORI[4]: 4
SOLVE]1,8]

If exactly the same problem appears twice,
assume that we can re-use the plan.
— 1.e. ordering of plan speeds 1s assumed independent of context

Planner Unpredictability

double-precision, power-of-two sizes, 2GHz PowerPC G5

FFTW 3 ,
Classic strategy:

’ - minimize op’s
fails badly

another test:
Use plan from:

1500 / another machine?

L[. e.g. Pentium-1V?
heuristic: pick plan lose 20—40%
with fewest -

adds + multiplies + loads/stores

R 4 (o24]

z
16
07

z

ey o = — 2 OO0 = W o —~ \
o [=) n o E o) () vy) (o)
[o%] (9 N A () O O W ~J L — ()

= oo N rD OO (o)) w O —

We’ve Come a Long Way??

* In the name of performance, computers have become
complex & unpredictable.

e Optimization is hard: simple heuristics (e.g. fewest flops)
no longer work.

e One solution 1s to avoid the details, not embrace them:

(Recursive) composition of simple modules
+ feedback (self-optimization)

High-level languages (not C) & code generation
are a powerful tool for high performance.

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover2.pdf
	Blank Page

