

Introduction to Julia:
Why are we doing this to you?

(Spring 2019)

Steven G. Johnson, MIT Applied Math

MIT classes 18.06, 18.303, 18.330, 18.08[56],
18.335, 18.337, …

1

What language for teaching
scientific computing?

For the most part, these are not hard-core programming courses,
and we only need little “throw-away” scripts and toy numerical experiments.

Almost any high-level, interactive (dynamic) language
with easy facilities for linear algebra (Ax=b, Ax=λx),
plotting, mathematical functions, and working with
large arrays of data would be fine.

And there are lots of choices…

2

Lots of choices for interactive math…

Image courtesy of Viral Shah. Used with permission.
3

Just pick the most popular?
Matlab or Python or R?

We feel guilty pushing a language on
you that we

are starting to abandon ourselves.

Traditional HL computing languages
hit a performance wall in “real” work

… eventually force you to C, Cython, …
4

A new programming language?

Jeff Bezanson

julialang.org
Viral Shah

Alan Edelman (MIT) [begun 2009, “0.1” in 2013, ~40k commits,
1.0 release in Aug. 2018, 1.1 in Jan. 2019]

Stefan Karpinski

[30+ developers with 100+ commits,
1000+ external packages, 6th JuliaCon in 2019]

As high-level and interactive as Matlab or Python+IPython,
as general-purpose as Python,

as productive for technical work as Matlab or Python+SciPy,
but as fast as C.

5

https://julialang.org/

Performance on synthetic benchmarks
[loops, recursion, etc., implemented in most straightforward style]

(normalized so that C speed = 1)
6

Special Functions in Julia
Special functions s(x): classic case that cannot be vectorized well

… switch between various polynomials depending on x

Many of Julia’s special functions come from the usual C/Fortran libraries,
but some are written in pure Julia code.

Pure Julia erfinv(x) [= erf–1(x)]
3–4× faster than Matlab’s and 2–3× faster than SciPy’s (Fortran Cephes).

Pure Julia polygamma(m, z) [= (m+1)th derivative of the ln Γ function]
~ 2× faster than SciPy’s (C/Fortran) for real z

… and unlike SciPy’s, same code supports complex argument z

Julia code can actually be faster than typical “optimized”
C/Fortran code, by using techniques

[metaprogramming/codegen generation] that are
hard in a low-level language. 7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

sp
ee

d
(m

flo
ps

)

intel-mkl-dfti in-place
intel-mkl-dfti out-of-place
fftw3 out-of-place

fftw3 in-place
fftw3-no-simd out-of-place
fftw3-no-simd in-place
dfftpack
emayer
julia

bloodworth
cross
cwplib
esrfft

powers of two

[probably some tweaks to

FFTW 1.0-like code generation

(FFTW, MKL:

“unfair” factor of ~2

from manual SIMD)

FFTPACK FFTW w/o SIMD
Julia

Pure-Julia FFT performance

double-precision complex, 1d transforms

already comparable to FFTPACK

inlining will make it better]

+ recursion in Julia

~ 1/3 lines of code compared to

FFTPACK, more functionality

262144

131072

65536

32768

16384

8192

4096

2048

1024

512

256

128

64

32

16

8 4 2

8

given x = [α1, α2, …], generate:
Generating Vandermonde matrices

NumPy (numpy.vander): [follow links]

Python code …wraps C code
… wraps generated C code

type-generic at high-level, but
low level limited to small set of types.

Writing fast code “in” Python or Matlab = mining the standard library
for pre-written functions (implemented in C or Fortran).

If the problem doesn’t “vectorize” into built-in functions,
if you have to write your own inner loops … sucks for you.

9

https://github.com/numpy/numpy/blob/f4be1039d6fe3e4fdc157a22e8c071ac10651997/numpy/lib/twodim_base.py
https://github.com/numpy/numpy/blob/3b22d87050ab63db0dcd2d763644d924a69c5254/numpy/core/src/umath/ufunc_object.c
https://github.com/numpy/numpy/blob/3b22d87050ab63db0dcd2d763644d924a69c5254/numpy/core/src/umath/loops.c.src

Generating Vandermonde matrices
NumPy (numpy.vander): [follow links]

Python code …wraps C code
… wraps generated C code

type-generic at high-level, but
low level limited to small set of types.

Julia (type-generic code):

function vander(x, n=length(x))
m = length(x)
V = Array(eltype(x), m, n)
for j = 1:m

V[j,1] = one(x[j])
end
for i = 2:n

for j = 1:m
V[j,i] = x[j] * V[j,i-1]

end
end
return V

end

given x = [α1, α2, …], generate:

10

https://github.com/numpy/numpy/blob/f4be1039d6fe3e4fdc157a22e8c071ac10651997/numpy/lib/twodim_base.py
https://github.com/numpy/numpy/blob/3b22d87050ab63db0dcd2d763644d924a69c5254/numpy/core/src/umath/ufunc_object.c
https://github.com/numpy/numpy/blob/3b22d87050ab63db0dcd2d763644d924a69c5254/numpy/core/src/umath/loops.c.src

Generating Vandermonde matrices
function vander(x, n=length(x))

m = length(x)
V = Array(eltype(x), m, n)note: works for any container for j = 1:m of any type with “*” operation V[j,1] = one(x[j])
end … performance ≠ inflexibility
for i = 2:n

for j = 1:m
V[j,i] = x[j] * V[j,i-1]

end
end
return V

end

11

But I don’t “need” performance!

For lots of problems, especially “toy” problems in courses,
Matlab/Python performance is good enough.

But if use those languages for all of your “easy” problems,
then you won’t be prepared to switch when you hit a hard
problem. When you need performance, it is too late.

You don’t want to learn a new language at the same time
that you are solving your first truly difficult computational
problem.

12

Just vectorize your code?
= rely on mature external libraries,
operating on large blocks of data,

for performance-critical code

Good advice! But…

• Someone has to write those libraries.

• Eventually that person will be you.
— some problems are impossible or

just very awkward to vectorize.

13

But everyone else is using
Matlab/Python/R/…

Julia is still a young, niche language. That
imposes real costs — lack of familiarity,
rough edges, continual language changes.
These are real obstacles.

But it also gives you advantages that
Matlab/Python users don’t have.

14

But I lose access to all the libraries
available for other languages?

Very easy to call C/Fortran libraries from
Julia, and also to call Python…

15

Julia leverages Python…

Directly call Python libraries (PyCall package),
e.g. to plot with Matplotlib (PyPlot package), and also…

via IPython/Jupyter:

Modern multimedia
interactive notebooks
mixing code, results,
graphics, rich text,
equations, interaction

“IJulia”
© Project Jupyter. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

16

https://ocw.mit.edu/help/faq-fair-use

goto live IJulia notebook demo…

Go to juliabox.org for install-free IJulia on the Amazon cloud

See also julialang.org for more tutorial materials…

17

https://julialang.org
https://juliabox.org

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Blank Page

