Chapter 1

(Gaussian matrix ensembles

Historically, log-potential systems first came to be studied due to an analogy with random ma-
trices. The matrices have Gaussian elements and are Hermitian; they are then divided into three
classes according to the elements being real, complex or real quaternion. The relationship of
these matrix ensembles to quantum physics will be explained, and their eigenvalue probability
density function (p.d.f.) calculated. A random tridiagonal matrix which interpolates continu-
ously between the eigenvalue p.d.f.’s of the Gaussian ensembles is presented. This p.d.f. coincides
with the Boltzmann factor of a certain log-potential system for general inverse temperature. In
the case of Gaussian Hermitian matrices with complex elements, certain averages are related to
combinatorial problems involving the embedding of maps on surfaces. Solutions are given which
make use of results from the log-gas picture.

1.1 Boltzmann factors

The analogy between random matrices and log-potential systems involves the Boltzmann factor
of the latter. Let us therefore begin by showing how the Boltzmann factor is computed. For
this purpose, some basic theory from statistical mechanics is required.

The canonical formalism of statistical mechanics applies to any mechanical system of N
particles free to move in a fixed domain §2, in equilibrium at absolute temperature 7. A fun-
damental postulate gives the p.d.f. for the event that the particles are at positions 71,...,7n
as

1

. e—ﬁU(Fl,---,FN).
ZN

Here U(7,...,7n) denotes the total potential energy of the system, § := 1/kgT (kp is Boltz-
mann’s constant), and the normalization Zy is given by

ZN = /Qd’l?l---/Qd’r_”Ne_’BU(Fl"“’FN). (1.1)

The term e~ PU1-TN) ig referred to as the Boltzmann factor while ZN/N! =: Zy 1is called the
(canonical) partition function.
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For log-potential Coulomb systems the potential energy U is calculated according to the
laws of two-dimensional electrostatics, and €2 must be one or two dimensional. The particles can
be thought of as infinitely long parallel charged lines, which are perpendicular to the confining
domain. In a vacuum the electrostatic potential ® at a point ¥ = (z,y) due to a two-dimensional
unit charge at 7' = (2',1') is given by the solution of the Poisson equation

V20(7,7) = —2md(7 — ) (1.2)

where o o
2. o0 O
Vii= 0x? + oy?’

It is straightforward to verify that the solution of the Poisson equation is (see Exercises 1.1 q.1)

(7, 7') = —log (|7 = 7| /1), (1.3)
where [ is some arbitrary length scale which will henceforth be set to unity.

A Coulomb system is said to consist of one-component if all N particles are of like charge,
q say. 'To stop the particles all repelling to the boundary, a neutralizing background charge
density —gpy(7) is imposed, with the electroneutrality condition [, pp(7)d = N. The total
potential energy U therefore consists of the sum of the electrostatic energy of the particle-
particle interaction

Uy = —¢* Z log |7, — 7],
1<j<k<N

the particle-background interaction

N
Uy := ¢? Z V() where V(7)) = / log |7 — ;| p () d, (1.4)
=1 “

and the background-background interaction

5 2
Us := —q—/ dF'pb(F')/ dr py(7) log |7 — 7] = —q—/ po (P )V (") dr'. (1.5)
2 Ja Q 2 Ja

The factor of 1/2 in Us is included to compensate for the double counting of the potential energy
implicit in the double integration.

From this expression for U we conclude that the Boltzmann factor of a one-component log-
potential Coulomb system is of the form

N

N | G | B (1.6)
=1 1<j<k<N

where I' := ¢?/kpT. Furthermore, for a given geometry and background density the potentials

V(7) and Us can readily be evaluated. As an illustration, we have the following result.

Proposition 1.1 The Boltzmann factor of a one-component log-potential Coulomb system of N
particles of charge ¢ = 1, confined to a circle of radius R with a uniform neutralizing background,
is given by
RfNﬂ/Z H |€i9k o eiGj |[3’
1<j<k<N
where the position of each particle has been specified in polar coordinates.
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Proof It is generally true that for two points ¥ and 7' in the plane |¥ — 7’| = |z — 2/| where z and 2z’
are the corresponding points in the complex plane. Hence, if 7 and 7’ are both on a circle of radius R
with positions specified using polar coordinates, then | — 7’| = R|e?’ — e |. Use of this formula gives the

required expression for the product over pairs in (1.6). It also allows the potential V' (7) to be written as

27

N -n! -
Vi = 5% i log |Re"” — Re'| Rdf'

N 2 .
= NlogR+—/ log e — 1| db'.
2 Jo

But it is straightforward to show that the last integral vanishes (see Exercises 1.1 ¢.2), and so V(7) =

Nlog R. Use of this result gives Uz = —gN 2log R. Substituting these evaluations in (1.6) and noting
that since ¢ = 1, I' = 3 gives the desired expression for the Boltzmann factor.

The Boltzmann factor, being proportional to the p.d.f. for the location of the particles, occurs
in the definition of all statistical quantities associated with the equilibrium state. In particular

the canonical average of any function f(7,...,7n) is given by
1 . . . . _ . .
(f)y = Z /erl . ./erN F(PL, ... 7y)e PUTLTN), (1.7)
N

1.1.1 Free energy

In the canonical formalism of statistical mechanics, the total dimensionless free energy SF is

given by
1 -
BF = —log MZN (1.8)
and the corresponding dimensionless free energy per particle Sf is given by
) 1
pf=  Jm —pF. (1.9)
N/IQl=p

The limit N, || — oo, N/|Q| = p (fixed) is referred to as the thermodynamic limit. From [ f
other thermodynamic quantities of interest can be computed by differentiation. In particular

0
o = ol (y00) = (10

N
N/19l=p

gives the mean energy per particle. A further differentiation gives the specific heat Cy at constant
volume (also referred to as the heat capacity),

1 Ou
Cv/kp = ——=—=5. 1.11
v/ks 7 ap (1.11)
We see from (1.7) and (1.10) that in terms of averages
1 1
Cv/hp = 2 N}lﬂggfloo (0 =), (1.12)
N/|Q2=p

so in particular Cy is non-negative.
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Also, in thermodynamics, the pressure is related to the free energy by dF = —Pd|Q| — SdT
(S denotes the entropy) so one has

8F) NQg
T

P:—(m P

(1.13)

where the final expression holds in the thermodynamic limit.

1.1.2 Distribution functions

5)0(7" — 71) the canonical average (1.7) is called the two-particle
distribution function pq) (7, 7),
1, N
pey (i) = = (D 6 = I — %))
ZN k=1
i#k
N(N -1 sl o
_ NvoD) )/dfg---/ diy e PUTT Moy (1.14)
AN Q Q

where the last equality is valid for a system of identical particles. With this assumption, the
n-particle distribution is given by

N(N—-1)--- (N —n+1)

Py (P T) = i /an+1---/ dity U (115)
AN Q Q

We remark that p(,) (71, ... ,7n)/p(n-1)(71,...,7n—1) can be interpreted as the density at point
7 given that there are particles at points 7,..., 1.

The two-particle distribution is related to thermodynamic quantities. In particular, when U
is given by the sum of pair potentials ¢(7), and the system is in a fluid state so that

p)(F,7") = pioy (F = 7,0) =2 poy (7 = ),

we see from the definitions that for large ||

@) ~ B[ 5900 7 (1.16)

But for one component charged systems, the potential energy also contains a contribution from
the particle-background and background- background interactions. The above formula then
requires modification: the two-particle distribution p(y)(7,7") is to be replaced by the truncated

distribution

play (7 7") = pay (7 ") = pay (P)pay (7). (1.17)

(see Exercises 1.1 q.5).
The distribution function p(,) does not decay for large separation between particles. However,
by adding and subtracting appropriate combinations of p(y),...,pnp_1) t0 p) we can obtain

a quantity, denoted p{n and called the n-particle correlation function or the (fully) truncated n-
particle distribution function, which will decay when two or more particles are at large separation.
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The truncated two-particle distribution is given by (1.17), while the truncated three-particle
distribution is given by

Pl (P17, T3) o= pay (F1, 72, 73) = p(y (1) p(2) (P2, ) — p(ay (72) pray (71, 73)

and in general

n m
Py (P o) 5= 30 D (=1 (m = DT pgayn (Fos -+ To0) (1.19)
m=1 G Jj=1
where the sum over G is over all subdivisions of {1,2,...,n} into m subsets Gi,...,G,, with

G; = {gj(1),...,9;(|G;|)}. For example, when n = 3 the m = 1 term corresponds to G =
{1,2,3}, the m = 2 term to G; = {1}, G2 = {2,3} or G; = {2}, G2 = {1,3} or G; = {3},
{1,2}, and the m = 3 term to Gy = {1}, G2 = {2}, G3 = {3} (rearrangements of the G; are not
considered distinct). The inverse of this formula is given in Exercises 1.1 q.6.

Exercises 1.1

1.(i) By explicit differentiation show that ®(7,7') = —log (|F— F’|/l), satisfies the two dimensional
Laplace’s equation VZ®(7,7') = 0 for 7 # 7.

(ii) Use the divergence theorem in the plane
/ V2V (7) dif = /ﬁ -VV(F)dF
D c

with V(F) = ®(F,7'), D a disk centred on ' and C the circle which is the boundary of the disk, to
conclude

/ V2 O(7, i) dif = —2n.
D

Relate this result to the Poisson equation (1.2).
2. Use the power series expansion of log(1 — z) for |z| < 1 to show that for all |u| > 1,

2
/ log |1 — pe?|df = 0.
0

Show that this integral is equal to 2mlog|p| for |u| > 1 by using the result for |u| < 1, and use the
continuity of the integral as a function of y to deduce its value for |u| = 1.

3. Consider the two-dimensional one-component plasma confined to a disk. Suppose there are N mobile
particles of charge q and the disk is filled with a uniform neutralizing background p, = N/wR2.

(i) With the position of the particles specified in polar coordinates, use the integral evaluations of q.2
and the definition of V(r) (1.4) to show

V(r) = mpp(r?/2 + R*log R — R?/2).

Write down the Poisson equation satisfied by V (r).

(ii) Use this expression for V (r) to calculate Us and thus show that the Boltzmann factor is equal to

N2
e*FNQ((l/z) log R73/8)677I'pr ZJ.=1 [751%/2 H |Fk _ 77"7|F (120)

1<j<k<N
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4. Show that the total electrostatic energy Uy + Us + Us of a one-component system with pair potential
O (7, 7') = —log |[F—7"'| is related to the total electrostatic energy Uy (1) + Uz (1) + Us(l) of a one-component

system with pair potential ®(7,7') = — log (|r - r’|/l)

2
N
Ur(l) + Us(l) + Us(l) = Uy + Us + Uy — qT log 1.

5.(i) For the one-component plasma with p, constant show that to leading order in the volume |Q|
¢ [ V@7 ~ -1l [ o0
Q Q
where ¢(r) = —q¢*logr.

(ii) Use (i) to show that for p, constant, to leading order in |Q}| the particle-background potential U,
and background-background potential Us are such that

1 -
(U2 + V) ~ =50t10] [ () ar,
Q

and thus deduce that for the one-component plasma p(,)() needs to be replaced by p ) (7) in (1.16).
6. Define

:/dﬁ---/dfn || G ZSIGI ) vn[a]:/dﬁ---/df’n |1 G S GRS
Q Q =1 Q Q =1

and introduce the generating functions

Ulz;a] =

(i) Show that

(iii) Use the result of (ii) to show
Vlz;a] =logUlz;al,
and from this deduce that
1 v, [a] - vg,, [a]
=n! —mr w7l
unla] = "Z Z ml kil k!
m=1 ki,..., km >1

Kyt km=n

or equivalently

poy @i, wn) = D T pliasn @as1)s - Tg50650)-
G

m=1 j=1
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1.2 Random real symmetric matrices

At the beginning of this chapter it was commented that the study of log-potential systems
was initiated by an analogy with the eigenvalue p.d.f. of some random matrices. In this and
the following two sections we will introduce three types of Gaussian random matrix ensembles,
explain their relevance to quantum physics and calculate the corresponding eigenvalue p.d.f.’s.
The analogy with the Boltzmann factor of a log-potential Coulomb system will be discussed in
Section 1.5.

The first random matrix ensemble to be considered is specified as follows.

Definition 1.1 A random real symmetric N X N matrix X is said to belong to the Gaussian
orthogonal ensemble (GOE) if the diagonal and upper diagonal elements are independently chosen
with p.d.f.’s
1 7x2--/2 1 —z2
——e i and ——e ik
V2 U

respectively.

The p.d.f.’s of Definition 1.1 are examples of the normal (or Gaussian) distribution

1
\V2mo?

o~ (@—w)? /207

which is to be denoted Ny, o].

The joint p.d.f. of all the independent elements

N N
1 _.2 /9 1 —z2, /2
P(X) := H—e zj;/ H —e ik = An H e Tk
jo1 V2T 1<j<k<n VT k=1
= Aye LiwmTl? = Aye (/DTX? (1.21)

where Ay is the normalization and Tr denotes the trace, has some noteworthy features which
are of relevance to the application of the GOE to quantum physics. These features are given by
the following results (Porter [175]).

Proposition 1.2 Let R (X ) be any real orthogonal (symmetric) N x N matrix. Then P(RTXR) =
P(X). Furthermore, the most general p.d.f. satisfying this equation which has the factorization prop-
erty P(X) = Ili<jcr<n f(zjx) for f differentiable is

P(X) = Ae_azj\,lkzl(xjk)Q_sz‘vzl Zjj _ AefaTr(Xz)berX‘
Proof See Exercises 1.2 q.1.
Proposition 1.3 Define the entropy S of the joint p.d.f. P of the independent elements of X by

S[P]:= — [ Plog Ppu(dX) =: —(log P)p where ji(dX) := [],<j<r<ndxjr. Then P as given by
(1.21) maximizes S subject to the constraint (TrX?)p = N2.
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Proof Because of the constraint on the second moment, and the normalization constraint, we can write
SIP) = —(log Pyp — A((Tr X*)p = N?) + (log A+ 1) ((1)p — 1)

where A and —(log A + 1) are Lagrange multipliers. The condition for a maximum is 65 = 0, where the
variation is made with respect to P. This gives

—logP — ATrX? +logA =0

and thus P = Ae=>TX*  The value of X is determined to be 1/2 from the given constraint.

From these properties an understanding of the applicability of the GOE in the study of
quantum energy spectra can be obtained. However as a further prerequisite some theory from
quantum mechanics is required.

1.2.1 Time reversal in quantum systems

First it is necessary to understand the relevance of an N x N matrix to quantum energy spectra.
A basic axiom of quantum mechanics says the energy spectrum of a quantum system is given by
the eigenvalues of its (Hermitian) Hamiltonian operator H. Now, to model the discrete portion
of the spectrum of a complicated quantum system, a reasonable approximation is to replace the
in general infinite dimensional operator H by a finite dimensional N x N Hermitian matrix,
which has a discrete spectrum only.

Next we need to understand the significance of real symmetric matrices in quantum me-
chanics. In general the structure of a matrix modelling H is constrained by the symmetries of
H.

Definition 1.2 A quantum Hamiltonian H is said to have a symmetry A if
[Ha A] =0,

where |-, -] denotes the commutator.
One basic symmetry of most quantum systems is time reversal.

Definition 1.3 A general time reversal operatorl’ is any antiunitary operator i.e. a unitary operator
which has the property

T (alin) + blyo)) = aTlpn) + BT14),

where a and b are scalars and & denotes the complex conjugate of a.

Hence we say a quantum system has a time reversal symmetry if the Hamiltonian commutes
with an antiunitary operator.

Study of time reversal operators in the context of physical systems (see e.g. Messiah [154,
pg. 671], Haake [103, chapter 2]) further restricts their form. For systems with an even number
or no spin 1/2 particles, it is required that

T2 =1,



1.2. RANDOM REAL SYMMETRIC MATRICES 9

while for a finite dimensional system with an odd number of spin 1/2 particles
T?=-1 and T =ZyyK

where Zsy is a 2N x 2N block diagonal matrix with each 2 x 2 diagonal block given by

0 -1
1.22
] 122
(a tensor product formula for Zoy is given in Exercises 1.2 q.2) and K is the complex conjugation
operator. Real symmetric matrices arise in the former situation.

Proposition 1.4 Let H be a quantum Hamiltonian which is invariant with respect to a time
reversal symmetry T, where T has the additional property T? = 1. Then H can always be given a T'-
invariant orthogonal basis, and with respect to this basis the (in general infinite) matrix representation
of H is real.

Proof See Exercises 1.2 q.3.

The above result tells us that a matrix chosen to model the discrete energy spectra of a
quantum system with a time reversal symmetry 7" such that 72 = 1 must be real symmetric.
A further general property in quantum mechanics is that two operators related by a similarity
transformation of unitary operators are equally valid descriptions of the operator, in that all
observables are the same for both operators. A requirement of (1.21) is therefore that any two
real symmetric matrices related by a similarity transformation of unitary matrices must have
the same p.d.f. for the elements. Now, for the two real symmetric matrices to be so related the
unitary matrix must be real orthogonal (or 7 times a real orthogonal matrix; see Exercises 1.2
q.4). Thus this requirement is guaranteed by Proposition 1.2.

We are assuming no information on the Hamiltonian other than the time reversal symmetry.
Proposition 1.3 says that the p.d.f. (1.21) is the most random subject to the given constraint,
in that it maximizes the entropy.

These considerations thus show the applicability of the GOE in the study of quantum spec-
tra. Explicitly, it is hypothesized that the statistical properties of the highly excited states of
a complex quantum system with a time reversal symmetry 72 = 1 coincide with the statisti-
cal properties of the bulk eigenvalues from large GOE matrices. Here it is assumed that both
spectra have been scaled (technically referred to as unfolded) so that the mean spacing is unity.
The meaning of a complex quantum system requires further explanation. Wigner first made
this hypothesis for the spectra of heavy nuclei in the 1950’s. In 1984 Bohigas, Giannoni and
Schmidt made the same hypothesis for a single particle quantum billiard system, provided the
underlying classical mechanics is chaotic and the system has a time reversal symmetry. It is of
interest to note that a GOE hypothesis also applies to eigenmodes of microwave cavities (this
is not surprising as the Helmholtz equation is formally equivalent to the stationary Schrodinger
equation), and also to the eigenmodes of systems governed by classical wave equations — vibra-
tions of irregular shaped metal plates, electromechanical eigenmodes of aluminium and quartz
blocks, amongst other examples. (For references to the original literature, and an extended
discussion of GOE hypotheses, see [100].)
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Exercises 1.2

1. The objective of this exercise is to prove Proposition 1.2.

(i) Note that the invariance P(RT XR) = P(X) requires that P be a symmetric function of the
eigenvalues, and thus a function of Tr(Xk) k = 1,2,.... Because these traces are symmetric in the
diagonal elements of the matrix, and symmetric in the off diagonal elements, conclude that we must have

fii =F, fir =9 (j <k) for some f and g.
(ii) Choose

1 ¢ 0 0
- 1 0 0
R— 0 0 1 0
0 0 O 1

where |e| < 1. Ignoring terms O(e?), show that

11 — 2€r12  T12 + 6(3311 - 1“22) T13 —€r23 ... T1N — €I2N

ES I22 + 261‘12 I23 + €T13 oo TN + ET1IN
R71XR: * * 33 T3N
* * * ITNN

where the elements * are such that the matrix is symmetric.

(iii) Use the result of (ii) to show that at first order in € the requirement

N
@) TI oG =11fGE I 9@,
j=1

1<j<k<N j=1 1<j<k<N

where &, := [R™' X R]; implies

N
(11 — T22)9'(212) 23312]”(3311) " 23312f 3322 Z <x2]g 1) xljgl(@j)) -0

g(w12) 7 fzn) f(x22) g(z1;) g(w25)

Jj=3
which in turn, by separation of variables, implies

T259' (1)) w159 (w25)
g(z15) g(w25)

=a, j>3

for some constant c.

(iv) By choosing ©1; = x»; in the last equation, specify a and further separate variables to conclude

gy _
g(@1j)z1;
for some constant b.

(v) Solve the above differential equation and thus, after making use of the first sentence in (i), deduce
the result of the proposition.

2. Let A = [a;5] be a p x ¢ matrix and B = [by;/] be a r x s matrix. The tensor product, denoted
A ® B is the pr x qs matrix with elements

(A ® B)iy jjr = as,jby j
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and thus
auB a12B e aqu

A®B = : : - :
(J,plB ap2B e aqu
With Zon defined as above (1.22), show that

0 -1
Zony =1y ® |: 1 0 :| . (123)

3. Let
Y1 = a1 + T(a1¢1)

where oy is a scalar, ¢ and ¢, are vectors, T is antiunitary and T? = 1. Note that T4, = v. Here
Proposition 1.4 will be established.

(i) From the antiunitarity property it follows that in general (u|Tv) = (T'u|v). Use this to show that

(u|v) = (Tu|Tv).

(ii) Suppose ¢2 is orthogonal to ¢1. Use (i) to show that s := aads + T (aa¢2) is orthogonal to 1y, and
note how this construction can be used to create an orthogonal basis of vectors with the T-invariance
property Tty = ¢n.

(iii) Consider a Hamiltonian H which has the symmetry T. Use the above properties of T' to show that
with respect to the basis {1, } the matrix elements (\.,,|H1,) are real.

4. Let X be an arbitrary real symmetric N X N matrix and suppose
X'=U"'XU
where U is unitary and X' is real symmetric. Assume that the only symmetry of X and X' in general
(other than some constant times the identity) is the time reversal operator T with T? = 1.
(i) Deduce that TUT~'U~" commutes with X .
(ii) Use (i) to show TU = cUT and take the inverse of this equation to conclude ¢ = £1.
(iii) Use (ii) and q.3(i) to show that with respect to the T invariant basis {¢,}

(Vn|Utm) = c(@pn|Uthp).

Hence conclude that U has either real elements (¢ = 1) or pure imaginary elements (¢ = —1) and is thus
either a real orthogonal matrix or i times a real orthogonal matrix.

1.3 The eigenvalue p.d.f. for the GOE

The p.d.f. for the elements of the matrices in the GOE is given by (1.21). We want to calculate
the corresponding eigenvalue p.d.f. This was first accomplished as long ago as 1939 [109]. We
will follow a more recent treatment (Muirhead [157]).

The new variables and the final expression

The p.d.f. (1.21) has N(N + 1)/2 independent variables, whereas there are only N eigenvalues,
A1 < --- < Ay say. The remaining variables are linear combinations of the independent elements



12 CHAPTER 1. GAUSSIAN MATRIX ENSEMBLES

of the eigenvectors, denoted p1,...,py(n_1)/2 say. Our task is to change variables
1 1 N N N(N-1)/2
exp ( — §Tr(X2)) H dzxj, = exp ( ~ 5 Z )\12) |J] d\j H dp;
1<j<k<N I=1 j=1 j=1

where the Jacobian is given by

or11 o0x12 oxNpN
o1 o1 U O
Oz1y Oz1n 9zN N
o2 o2 U o2
J := det . . .
0r11 Or12 OrNN
OpN(N=1)/2 OpNn(N—1)/2 = Opn(N-1)/2

Thus we must evaluate the Jacobian and then integrate over the variables p, .

-y PN(N-1)/2 tO
obtain the eigenvalue p.d.f.

Below we will show that J factorizes,

J = H (Ak — >\j) f(p1,- - apN(N—l)/Z)
1<j<k<N

so the integration over the variables p1,...,py(v_1)/2 only alters the normalization constant.
Hence the final expression for the eigenvalue p.d.f. of the GOE is

1 1N
—e€ g Zj:l )\]2 H |)\k — >\j| (1.24)
Cn <
<j<k<N

where Cpy is the normalization constant.

From the viewpoint of application to quantum mechanics, the important feature is the prod-
uct of differences due to the Jacobian. In Chapter 5 we will see that the n-point correlations
are determined entirely by the product of differences, in the sense the same so called bulk cor-
relations result if the one body terms e /2 are replaced by some different functional forms
e=VN/2 provided the local density is constant. This gives rise to the notion [24] that the essen-
tial feature of a random matrix hypothesis applying to a quantum system is that the spectral
correlations are geometrical, meaning that they are due to this Jacobian.

1.3.1 Wedge products

In the theory of multivariable calculus the wedge product operation is defined to give to signed
volume element in the tangent space at a point in the manifold.

Definition 1.4 Let p be a point on a manifold with coordinates u1,...,uy, and let P be the
orientated parallelepiped in the tangent space determined by the vectors 1,...,7n. Then
N
dug A - ANduy =: /\ duj = det[du;(7}))i j=1,...N (1.25)
j=1

where it is understood that all quantities are with reference to p and P.
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Note that it follows from (1.25) that

/f(ul,...,uN)dul/\---/\duN:/f(ul,...,uN)dul---duN.
Q Q

When changing variables from {u1,...,un} to {vi,...,vy} the fundamental formula

ou;
du; = Z o, dv;

applies. Substituting this in (1.25), and noting the factorization

0 ouy; .
[Z a—ZZdv } ij=1,..,N - [a—z;]i,jzl,...,N{dvi(lrj)}i,jzl,...,N

shows
N ou; N
N\ duj = det [%j]z_,j:lmN j/:\l dv;. (1.26)

i=1

The determinant in (1.26) is precisely the Jacobian for the change of variables. The practical
use of calculating Jacobians from this formula relies on an alternative way of calculating the
Lh.s. of (1.26) in terms of {v;}. For the problem at hand, this in turn is done by using the
special feature that all the variables are connected by matrix relations. The following definitions
are useful.

Definition 1.5 For any N x N matrix X = [z;1], the matrix of differentials is defined as

d:I?H d:I?lQ e d]?lN

d(L‘Ql d(L‘QQ [N d:EQN
dX = : .

d(L‘Nl d(L‘NQ dZENN

With this definition the usual product rule for differentiation holds,
d(XY)=dXY + XdY.

Definition 1.6 The symbol (dX) denotes the wedge product of the independent elements of dX .
In particular, if X is a symmetric matrix,

dX)= N dzj,
1<j<k<N

while if X = [,’L‘jk + iyjk]j,kzl,...,N is Hermitian (Z‘jk = Tkj, Ykj = —yjk),

N
X)=Ndzjj N\ dajedyp.
j 1<j<k<N
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In integration formulas only the absolute value of the Jacobian occurring in the change of
variables formula (1.26) is required, so consequently there is no need to strictly adhere to the
ordering of wedge products specified in Definition 1.6 (according to the definition, reversing the
order of two differentials changes the sign of the wedge product). Because of this, any overall
factor of —1 will be ignored in subsequent formulas involving (dX). With this convention (dX)
will be referred to as a volume form, or volume measure.

In preparation for the calculation of J, we note a result for the wedge product (ATdM A)
where A is a real N x N matrix and M is a real symmetric N x N matrix [157].

Proposition 1.5 Let A and M be real N x N matrices, and suppose furthermore that M is
symmetric. We have
(ATdM A) = (det A)NTL(dM).
Proof We note from Definition 1.6 that
(ATdM A) = p(A)(dM), (1.27)
where p is a polynomial in the elements of A. Furthermore, if B is also an N x N matrix, then
(B"ATdM AB) = p(B)(ATdM A) = p(B)p(A)(dM))

so we must have
p(AB) = p(A)p(B),

for arbitrary A and B. But it is known [141] that the only polynomial in the matrix elements satisfying
such a factorization is
p(A) = (det A)*, k€ Z>,.

The value of k can be determined by making the special choice A = diag(a,1,...,1) in (1.27).

For an alternative proof of this result, see Exercises 1.4 q.2.

1.3.2 Calculation of the Jacobian

From Definition 1.6 and (1.26) we see

N N(N-1)/2
JNdx N\ dpj = (dX).
i=1 j=1

To calculate (dX) in terms of the eigenvalues and eigenvectors we use the fact that all symmetric
matrices are orthogonally diagonalizable to write

X = RLR? (1.28)

where L is a diagonal matrix consisting of the N eigenvalues of X and the columns of the real
orthogonal matrix R consist of the corresponding normalized eigenvectors. Using the notation
of Definition 1.5, the product rule for differentiation gives

dX =dRLR" + RIL R" + RLdIR".
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Rather than take the wedge product of both sides of this equation, it is simpler to first
premultiply by RT and postmultiply by R to obtain

R"dIXR = R"dRL+ LIR"R+dL
RT"dRL — LR"dR +dL, (1.29)

where to obtain the last line the formula dRT R = —RTdR has been used (this follows from
RRT =1).

According to Proposition 1.5
(RTdXR) = (det R)V T (dX). (1.30)

But R is an orthogonal matrix and so det R = £1. As already noted, since only the modulus
of J occurs in the change of variables formula, this sign factor can be ignored.

The wedge product of the r.h.s. of (1.29) can be taken with the aid of the following result.

Proposition 1.6 With the notation 7, = (1, 7ok, ..., 7Nk)" , for the kth column of R we have

RTdRL — LRTdR + dL

d\, Do = A)Al-drs ... An = A)rA! - dry
(Ao = A)A T - dr dXo o Oy = x)m dry
AN = A)AT - drie v — M)l -dry ... d\n

Proof This follows by explicitly forming the matrix products, and simplifying the resulting expression
by noting from RR" =1 that 7T - diy, = —i% - dF] = = - dFf;.

From Proposition 1.6 and Definition 1.6, the wedge product of the r.h.s. of (1.29) can be
written down (note in particular that the matrix in Proposition 1.6 is symmetric), whereas (1.30)
gives the wedge product of the Lh.s. of (1.29). Equating these expressions gives

dx)= I x-X) /]< d\; (RTdR). (1.31)
1<j<k<N j=1

The factorization property of the Jacobian between the eigenvalues and the variables involving
the eigenvectors is evident and the expression (1.24) for the eigenvalue p.d.f. of the GOE follows.
The p.d.f. for the components of the eigenvectors is calculated in Exercises 1.3 q.2.

1.3.3 Scaling of the Jacobian

Here we will show how the eigenvalue factor in the Jacobian can be deduced by considering a
simple scaling property of the wedge product. Since there are N(N +1)/2 independent elements
in X, (dX) consists of the product of N(N +1)/2 independent differentials. Thus if we multiply
X by a scalar a, we have that (daX) = ¥ +1/2(dX). On the other hand, with X = RLRT,
we know that (RLR”) is a polynomialin A1, ..., Ay. Since aX = RaLR”, the scaling property



16 CHAPTER 1. GAUSSIAN MATRIX ENSEMBLES

of (daX) gives that in fact (RLRT) is a homogeneous polynomial of degree N(N —1)/2 (here we
have subtracted N from N (N +1)/2 to account for the scaling of the measure d)\; - - - d\y). Since
the Jacobian must vanish for A; = )\, which is equivalent to saying that repeated eigenvalues
occur with zero probability, the polynomial factor is necessarily proportional to [];. (A = Aj),
in agreement with the above calculation.

1.3.4 Metric forms

Another approach to deriving (1.31) is through the use of a metric form defined on the space of
symmetric matrices [110]. For an N x N real symmetric matrix X, the metric form of the line
element ds is specified by

N
(ds)* = Tr(dXdX") = (dzj;)* + 2 (dwj)?, (1.32)

j=1 i<k
(of course dX T — dX, but it is convenient to write as presented), and the volume measure is
(dX) = )\ dzj.
i<k
If one now makes a change of variables, expressing the elements z;; in terms of some new

variables y;; such that
N

(ds)® = > (hjjdy;i)? + 2> (hjedy;i)?, (1.33)

j=1 i<k
where the hj;’s typically depend on {y;i}, the corresponding volume measure is
(dX) = (\ hjr) (@Y), (1.34)
J<k
thus giving a change of variable formula for the volume measure.

More generally the metric forms method gives that if (ds)? is a symmetric quadratic form in
some independent infinitesimals {dy,}, so that

(d3)2 = Zgu,udyudyua 9uyw = Gu,u (1.35)
1

then the corresponding volume measure is
1/2
(det[gu,,,]) /\dyu. (1.36)
o

Comparing (1.35) with (1.33), we see that there are only diagonal terms present in the formula
for the line element. The determinant is then the product of the diagonal terms, which is
consistent with (1.34).

We can apply this formalism by noting from (1.29) and Proposition 1.6 that
N
Tr(dXdXT) =Y (A = M) (7 - di)” + D (dAg)*.
i<k j=1

Application of (1.34) then reclaims (1.31).
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Exercises 1.3

1.(i) Let R be a N x N real orthogonal matrix. Show that in general R has N> — N(N —1)/2 — N
independent elements.

(ii) Use (i) to show that the number of independent elements on both sides of the equation X = RLR',
where X is real symmetric and L is diagonal, is equal.

2. Here, following [103], the distribution of the components of the eigenvectors in the GOE is calculated.

(i) Note that for matrices in the GOE every eigenvector can be transformed by an arbitrary real
orthogonal matrix, and still remains an eigenvector of a matrix in the GOE. Conclude from this that
the only invariant of the eigenvectors is their norm, and so the joint distribution of the components

(u1,-..,un) is therefore given by
N
1 Z 2
56(1 — ’U,p),

p=1
where C' = 2rN/2 /T(N/2) and represents the surface area of the unit N-sphere.
(ii) Show that the reduced, or marginal, joint distribution p(u, ..., u,) obtained by integrating out the

variables u,41,...,un is given by

_ _npp D(N/2) "L\ (N-n-2)/2
plas o) = 77 gy (1= ) -

p=1
For this purpose write the delta function in (i) as a Fourier integral.
(iii) From (ii) show that for large N,

1 Uy Uy, 2\n/2 _1 Sl
Wp(\/—ﬁ,,\/—ﬁ) ~ (;) e ? p=1 . (137)
iv) Show that forming a vector (u1,...,uy) in which each component has distribution z;/(x% + --- +
FIACS

x%)'/?, with the x;’s standard normal random variables, implies the vector is uniformly distributed on
the unit N-sphere and thus has joint density as in (i). Use this fact to rederive (1.37).

3. (i) For a general 2 x 2 real symmetric matrix

e[ ]

show that the (unordered) eigenvalues are given by

1 1 5 2\ 1/2
)\i—i(a-i—c)ii((a—c) +4b) i

(ii) For the matrix in (i) parametrize the matrix of eigenvectors as

| cos@ —sinf
" | sinf  cosf

and from the diagonalization equation A = Rdiag[A,, \]R”, read off that
a=MX;cos’8+ A_sin?f, b= (A —A_)cosfsinf, c= A\ sin’f+ A_cos’4.

(iii) Deduce from (ii) that

Oa ob Oc
o\ o\ o\
Y N
J = = (>\+ — )\_)
ON_ OX_ Ol
Oa ob Oc

09 90 9
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and note that this is consistent with (1.31).

1.4 Random Hermitian and quaternion real matrices

Since most physical systems possess a time reversal symmetry, the GOE correctly describes
statistical properties of the spectra of many quantum systems. Examples are the excitations
of heavy nuclei and the spectrum of the hydrogen atom in a strong magnetic field (the latter
system has a “non-conventional” time reversal symmetry, see Haake [103]). Nonetheless the
considerations of time reversal symmetry of Section 1.2.1 indicate two further random matrix
ensembles.

1.4.1 The Gaussian unitary ensemble

For a quantum system without time reversal symmetry the only constraint on the complex
Hermitian matrix used to model the discrete portion of the energy spectrum is that two matrices
related by a similarity transformation of unitary operators have the same joint p.d.f. for the
elements. This requirement is satisfied by the following choice of matrix ensemble.

Definition 1.7 A random Hermitian N x N matrix X is said to belong to the Gaussian unitary
ensemble (GUE) if the diagonal elements (which must be real) and the upper triangular elements
Tj = Ui + iv;i are independently chosen with p.d.f.

1 2 2 _o(y? 42 2 2
—e Wi and Ze 2(Wrtuin) = Ze—2wil”,

N v s

respectively. Equivalently, the diagonal entries have distribution N[0, 1/+/2], while the upper trian-
gular elements have distribution N[0, 1/2] 4+ iN[0,1/2].

From this definition the joint p.d.f. of all the independent elements is
N ]_ 2 2 *2|LL‘2 | N 2 Tr X2
P(X):= 1:[ ﬁe i H e iH = AN 11 e 1l = Ay TrXD)
= 1<j<k<N Gok=1

where Ay is the normalization. The invariance P(U~!XU) = P(X) for any unitary matrix U
follows immediately.

1.4.2 The Gaussian symplectic ensemble

In subsection 1.2.1 it was remarked that in quantum systems with a time reversal symmetry
T, either T2 = 1 or T? = —1 with T' = Zynx K. Consideration of the former case leads to real
symmetric matrices. Here the latter possibility will be discussed.

Now, since T' commutes with the 2N x 2N matrix X modelling the Hamiltonian, X must
in addition to being Hermitian have the property

X =TXT '=Z;nKXK'Z,\ = ZynKXKZ55 = Zon X Zyx- (1.38)
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Since Zop is block diagonal, with blocks (1.22), a 2N x 2N matrix X with this property can
be viewed as an N X N matrix with elements consisting of 2 x 2 blocks of the form

l S l (1.39)

—-w z

where z and w are complex numbers. A 2 x 2 matrix of this form is said to be real quaternion.
From an abstract perspective the quaternions are an algebra with elements of the form

ag + ayi + azj + ask, iP=2 =k = -1, ijk=—1, (1.40)

where ag, ..., a3 are scalars. The basis elements 1,4, 7,k can be realized as 2 x 2 matrices with
complex elements given by

PP I S I A I A I U S I N
= 0 1 1 =10, = 0 —i 2.—’LO'y— 1 0 3 .= 10, = i 0

(1.41)
respectively. Forming a general linear combination, consisting of real scalar multiples of these
basis elements gives the structure (1.39).

For future reference we note that with a real quaternion q written in the form q = ¢yl +
crel + caes + czes the dual, denoted g or g7, is defined as

q=q" =cl - cre; — cze5 — c3es. (1.42)

With this definition the dual of (1.39) is

l ; o ] . (1.43)

Furthermore, with |q|? := gq = q@, we have |g|> = 3 +c? + % +c3, the relation |q,q5| = |q,||q-|
holds, and each non-zero q has a unique inverse, ¢ ! = q/|q|*.

An N x N matrix with real quaternion elements is said to be quaternion real. This struc-
ture motivates the definition of the third and final ensemble of Gaussian random matrices as
motivated by quantum physics.

Definition 1.8 A random Hermitian N x N matrix X with real quaternion elements is said to be-
long to the Gaussian symplectic ensemble (GSE) if the elements z;; of each diagonal real quaternion
(which must be real) are independently chosen with p.d.f.

2 5.2
\/ Se i
™

(or equivalently have distribution N{0,1/2]) while the upper triangular off diagonal elements z;}, =
Ujk + 10k and wjp = u;k —i—z’v}k are independently chosen with real and imaginary parts having p.d.f.

4 2 4 2
Z e~ 42kl and Z e~ Hwjkl
s s

(or equivalently have distribution N[0, 1/2v/2] +iN[0,1/2v/2]).
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A fundamental property of quaternion real Hermitian matrices, which follows from the first
equation in (1.38), is that their spectrum is doubly degenerate (see Exercises 1.4 q.1).

It follows from Definition 1.8 that the joint p.d.f. of all the independent elements of the GSE
is given by .
P(X) = Aye T"X%),

where Ay denotes the normalization. This satisfies the general requirement of being invariant
with respect to similarity transformations of appropriate unitary matrices. In fact the appro-
priate unitary matrices are those which under a similarity transformation map a quaternion
real Hermitian matrix into another quaternion real Hermitian matrix. This subgroup of unitary
matrices is specified by the following result.

Proposition 1.7

(a) Let X be an arbitrary N x N Hermitian matrix with real quaternion elements, so that in general
the only symmetry of X (other than some multiple of the identity) is the operator T = ZynK.
Then any unitary matrix U which under a similarity transformation maps X into another Hermitian
matrix with real quaternion elements must commute or anticommute with T.

(b) A unitary matrix U which commutes with T' = Zon K has the the property

UZoynU" = Zyy, (1.44)

which implies U is equivalent to a symplectic matrix, while a unitary matrix U which anticommutes
with T' has the property —UZynUT = Zyy.

Proof (a) Let X' be such that U ' XU = X'. Since both X and X' are quaternion real, T commutes
with both of these matrices. This implies XTUT ! = TUT ' X'. Comparing these two equations gives
that TUT U™ commutes with X. But the only operators which commute with X are T and some
multiple of the identity, so the above combination of operators must equal one of these operators. We
see that the first choice leads to 7" = 1 which is a contradiction, while the second gives TU = +UT
(regarding the signs, recall Exercises 1.2, q.4(ii)) as required.

(b) At the beginning of this subsection it was noted that any matrix, in this case U, which commutes
with T has the property U = ZonU Z,x. The equation (1.44) follows after noting U = (U ')” and
rearranging. Now, by definition a matrix is symplectic if

(1.45)

XTJnX = Jon, Jon = { Ov 1w ] .

—1ny On
If X is also unitary this implies X has the block structure

zZz W

X = [ -W Z }

(cf. (1.39)). Now, the matrix Jop is related to Zon by a similarity transformation Jon = Q 'Z,nQ
where @ is a unitary matrix with elements +£1 (there must therefore be exactly one non-zero element in
each row/column). We thus conclude from (1.44) that Q@ 'UQ is symplectic. The only difference in the
anticommuting case is a minus sign, which gives the second result.

1.4.3 The eigenvalue p.d.f.’s

The calculation of the eigenvalue p.d.f.’s from the joint p.d.f.’s for the elements of the GUE and
GSE can be done in a similar way to that presented in Section 1.3 for the GOE. The required
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working is sketched in Exercises 1.4 q.3 and .4, and the final results are summarized in the
following result, which for completeness also contains the eigenvalue p.d.f. for the GOE.

Proposition 1.8 Let H be an Hermitian matrix with real (8 = 1), complex (§ = 2) and real
quaternion (8 = 4) elements, and let H be decomposed in terms of its eigenvalues and eigenvectors
via the formula H = ULU' where L is a diagonal matrix consisting of the eigenvalues of H, and
U is a unitary matrix with real (f = 1), complex ( = 2) and real quaternion (5 = 4) elements
consisting of the corresponding eigenvectors. We have

N
dH)= J[ 1M —-X1° A\ drj(U'av), (1.46)
1<j<k<N j=1

and hence for an appropriate choice of the normalization G gy, which is given explicitly by (1.76),

1

N
exp(—gz:)\?) I 12— 07 (1.47)

Gpn j=1 1<j<k<N

with 8 = 1,2 and 4 is the eigenvalue p.d.f. for the GOE, GUE and GSE respectively.

1.4.4 Relationship to Lie algebras

The sets of matrices

gl(N,R) := {all N x N real matrices}
gl(N,C) := {allN x N complex matrices}
u*(2N) := {all N x N real quaternion matrices}

are all closed under commutation and so form matrix Lie algebras.

Now, in general a matrix can be decomposed as the sum of a Hermitian and an anti-Hermitian
matrix. We see that the Hermitian component of the above Lie algebras corresponds to Hermi-
tian matrices with real, complex and real quaternion elements respectively. This is significant for
a number of reasons. One is from a classification perspective. In fact there are only ten distinct
infinite families of matrix Lie algebras. We will see that each of the remaining seven cases also
occur in a basic quantum mechanics problem constrained by a global symmetry. Furthermore,
the identification with matrix Lie algebras implies a one-to-one correspondence between the
ten families of Hermitian matrices and the ten families of unitary matrices. This comes about
because of the relationship between matrix Lie algebras and symmetric spaces. To each matrix
Lie algebra there corresponds a non-compact and compact symmetric space, with the former
being isomorphic to a certain set of Hermitian matrices, and the latter isomorphic to a certain
set of unitary matrices. Some more details are given in Section 2.1.1. The isomorphism with
symmetric spaces has the consequence that the eigenvalue dependent portion of the Jacobian in
(dH) can be written in the form .

IT I Xy

GeERy
where @, an N component Euclidean vector, is a so called root of the root system corresponding
to the symmetric space, (, ) is the dot product, R is the set of positive roots, and m, the
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multiplicity of &. This structure, in the case of the symmetric spaces corresponding to the
classical groups, appears in the so called Weyl integration formula [210]. For the symmetric spaces
corresponding to the Gaussian ensembles the positive roots are €; — €, (j < k) (root system
of type A — see Section 3.5.1) with multiplicities m, = [, and this reclaims the eigenvalue
dependent portion of (1.46). However we will not pursue the derivation of these facts, which
can be found in [107].

1.4.5 Octonions and the N =2, § =8 Gaussian ensemble

The p.d.f. (1.47) for N = 2, 8 = 8 can be realized as the eigenvalues of a random Hermitian
matrix with real octonion elements. To see this, we must first revise aspects of the theory of
real octonions [193]. The real octonions can be constructed out of the real quaternions. Let
P1,P2,q1, g2 be abstract real quaternions, and thus linear combinations with real coefficients of
{1,i,7,k} as specified by (1.40). Let g denote the quaternionic dual defined by (1.42), and let
I denote a quantity algebraically distinct from the real quaternions. The real octonion algebra
then consists of elements of the form a = p; + pal, b = g1 + ¢ol, with addition and multiplication
defined by

at+b=(p1+q)+2+tae)l, ab=(p1q1 — @p2) + (g2p1 +p2q1)l (1.48)
respectively. It follows that the real octonions are an eight dimensional algebra with basis
1, €1 1= ’i, €y 1= j, €3 = k, €4 1= l, €5 1= il, € 1= jl, €7 = kL.

In general

a(be) # (ab)e
(for example with ¢ = e5, b = eg, ¢ = e7 we have a(bc) = —ey and (ab)c = e4), so unlike the
real quaternions the real octonions are not associative. On the other hand, with a := p; — paol,
p1 denoting the quaternionic dual (1.42), we have ab = ba and thus with |a| := vaa = Vaa,

lab] = |al[b]- (1.49)

Furthermore, with a general real octonion written as a = ag + a1e1 + ases + ases + aseq + azes +
ageg + arer, we have

la] = \/a3 +a? ++ +a (1.50)

and it is also true that each a # 0 has a unique inverse specified by
o™ = a/(aa). (1.51)

The properties (1.49)—(1.51) say that the real octonions are a normed division algebra. In fact a
theorem of Hurwitz [111] says that up to isomorphisms, the only normed division algebras over
the reals, with a unit element, are the reals, complex numbers, real quaternions and the real
octonions.

Because the real octonions are not associative, they cannot be represented as a matrix
algebra. Nonetheless, the actions of right and left multiplication by a given real octonion a on
a general real octonion z can be represented as a matrix. To specify these matrices, we first
require the corresponding result for the real quaternions, which follows immediately from the
corresponding multiplication rule.
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Proposition 1.9 Let x = o + x1i + x2j + 23k be a real quaternion and let Z = (xq, 1, 29, x3)"
denote the column vector formed from the coefficients. Then

ar = ¢(a)Z, za = 1(a)Z
where
ayg —a1 —ay —as ayg —a1 —a —as
a ay —az a2 T ap ap az  —ag
a) = T7(a) = K a)K =
)= |7 W T W @) =K@k = | 0
ag —az aj ao ag ax —aip Qg

with K = diag[l, -1, -1, —1].

Using Proposition 1.9, the corresponding result for the real octonions follows from the mul-
tiplication rule (1.48).
Proposition 1.10 Letx = z9+x1e1+---+x7er be a real octonion, and let & = (xg, x1, . . . ,x7)T
denote the column vector formed fronz the coefficients. Then with a = a1 + asl a real octonion,
and thus ay,ay real quaternions, and K = diag[K, 14] we have

at = w(a)Z, za =v(a)¥
where

[ ag —aq —a2 —a3 —a4 —a5 —ag —ay i

ap ap —az az —a5 a4 ay  —ae

a9 as ap —a1 —ag —ary a4 as

wla) = ¢(a1) —7(az)K _| @ —a2 a1 a —ar as —a5 a4

¢(a2) K T(a1) as a5 ag ar ap —ai —az —as

as —a4 ar —ag ap aop as —az

ag —a7 —a4 as a9 —as ag a1
L a7 Gg —as —a4 a3 az —ap ap |

vie) = Kuwl(a)K.

Consider now the 2 x 2 Hermitian matrix with real octonion entries

a b
A= l b ¢ ] ’
For A to be Hermitian, the elements ¢ and ¢ must in fact be real, and thus
| alg  w(b)
w(A) = [ WI(b) clg ] . (1.52)

Adding together appropriate (octonion) multiples of rows and columns shows that this matrix
is similar to the matrix

b 0

0 b ]

alg 1, ®
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and thus the characteristic polynomial is given by

-\ 8
det(w(A) = Mig) = ((a = A)(c— ) - bb) .

This shows each eigenvalue is eight fold degenerate.

Regarding the eigenvectors, as the number of independent real elements in (1.52) is ten,
and there are two distinct eigenvalues, there are a total of eight independent components. This
implies that in the analogue of Proposition 1.6, exactly eight components are to be multiplied
together in any one term, and consequently

(dA) = (A1 — X2)8dMd)o(UTdU). (1.53)

Furthermore, choosing the elements a,c and the components b; of w(b) in (1.52) to have the

Gaussian distributions
2 —4q2 2 —4¢2? 8 _gp2
—e R —e , —e J
ﬁ ﬁ ™

respectively, we then have that the joint distribution of the independent elements is proportional
to

o~ Tr((W(A)?)/2

This together with (1.53) implies that the eigenvalue p.d.f. is given by (1.47) with N =2, § = 8.

Exercises 1.4

1. The aim of this exercise is to show that if a 2N x 2N Hermitian matrix X commutes with the time
reversal operator T = Z,n K, then the eigenvalues of X are doubly degenerate (this is known as Kramer’s
degeneracy).

(i) Suppose |¢) is an eigenvector of X with eigenvalue \. State why T'|¢) is also an eigenvector with
eigenvalue \.

(ii) Use the facts that T satisfies the formula of Exercises 1.2 q.3(i) and T? = —1 to show that (¢|T¢) = 0
and hence deduce the desired result.

2. Let A and M be N x N matrices, where A is non-singular. In this exercise, following [145, pg. 32]
it will be shown that for A real (f = 1), complex (8 = 2) and real quaternion (f = 4), and M real
symmetric (# = 1), Hermitian (§ = 2) and quaternion real Hermitian (§ = 4),

B(N—1)/2+1
) (@

(ATdM A) = (det(ATA) M), (1.54)

up to a + sign. In the case = 1, this is the statement of Proposition 1.5. The idea is to decompose

A in terms of elementary matrices A = E,E,_; --- E,. Each elementary matrix is either a permutation
matrix EU®) (the identity matrix with rows j and k interchanged), a matrix EY~%) which multiplies

row j by the constant « with a real (8 = 1), complex (8 = 2) or real quaternion (3 = 4) (the identity
matrix with row j multiplied by «), or the matrix EU=ITR) which adds together two rows (the identity
matrix with row k added to row j).

(i) Show by explicit calculation that for any matrix X of the same type as M
(E(J'Hk)dXE(J'Hk)T) = (dX), (E(jHj+k)dXE(ij+k)T) = (dX)
while, up to a £ sign

(BEU=eD) gx BU=elt) = |of(N-D42(gX) = |det BV~ |BIN=D+2(gx).
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(ii) Use the result of (i) to deduce the stated result.

For printing purposes, the symbol a* rather than & is used in the exercises below to denote the complex
conjugate.

3. The aim of this exercise is to calculate the change of variables from the independent elements of an
Hermitian matrix X to the eigenvalues A1, ..., AN and other independent variables.
(i) From the diagonalization formula X = ULU ' where L := diag[\1,...,\y] and U is a unitary
matrix with columns given by the eigenvectors of X, show that

(U 'dXU) = (U 'dUL — LU 'dU + dL)
and write down a formula for the Jacobian in terms of (dX). Use the result of q.2 to show that the
Lh.s. is equal to (dX).
(ii) Show that U *dUL — LU 'dU + dL equals

dA\ Do = AT -didts ... (Av—=N)a@l - diin
(Ao — M) (@ - dity)* dXs o (A = X)) - diy
Oy = M) (@ -diy)* Ay = A)(@h - diy)* ... d\y

(iii) Use the facts that ﬁ}f - dii}, has independent real and imaginary parts and that only the elements on
and above the diagonal are independent to conclude that the wedge product of the independent elements
of the matrix in (ii) equals

N
I =202 A\ axwtdv).

1<j<k<N j=1

(iv) Show that the factor dependent on the \;’s is consistent with the form required by the scaling
X — aX (recall Section 1.3.3).

4. Here the objective is the same as in q.2 above, except X is now a N x N Hermitian matrix with real
quaternion elements.

(i) From the diagonalization formula X = ULU ™" where L = diag[\;1», ..., An12] and U is an N x N
unitary matrix with real quaternion elements, write down the formulas analogous to those in q.3(i) and
q.3(ii) above. To write down the analogue of (ii) use a matrix notation for the quaternion elements,

N
_— T gt oa t
U = (Wig,---,UNE) uj-uk—g U, Upk,-
p=1

(ii) Use the facts that ﬁ'; - diiy, has four independent terms, corresponding to the real and imaginary
parts of the two independent terms in each real quaternion element, to deduce the formula analogous to
q.3(iii) above. Also repeat the scaling analysis of q.3(iv) above.

5. An Hermitian matrix with zero real part is antisymmetric.

(i) Show that the non-zero eigenvalues of antisymmetric Hermitian matrices come in + pairs, A\; and
—A;j say, with corresponding eigenvectors gz%- and 5;‘, and that for N odd A = 0 is an eigenvalue.

e

(ii) Use (i) to deduce that the equation of q.3(ii) holds with @; = gz%-, ANj2tj = —Aj, UNjogj = U]
(j=1,...,N/2) N even, and @ = @y = ¢o, Av = 0, @j = ¢j, Av—1y/24j = —Aj (G =1,-..,(N=1)/2)
N odd. Use the fact that eigenvectors of an Hermitian matrix corresponding to distinct eigenvalues
are orthogonal to deduce that ¢o T - d¢; = 0 (j # 0), and note too that ¢J - d¢y and ¢3T - d¢} are not
independent.
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(iii) Use (ii) to show that for an antisymmetric Hermitian N x N matrix H', diagonalized by H' =
ULU !,

N/2
(dH') = H (A?_)\i)2/\d>\j(UTdU), N even
1<j<k<N/2 j=1
(N-1)/2 (N—1)/2
(aH') = H 2 - A dy(Utdu), Nodd.
1<j<k<(N-1)/2 =1

(iv) Conclude from the result of (iii) that for a random antisymmetric Hermitian N x N matrix with
T

upper triangular elements iz, chosen with p.d.f. \/1/me” ?k, the eigenvalue p.d.f. is equal to

LV

H e H (/\5 —A2)%, Neven
1<j<k<N/2

(N 1)/2

c H A 11 (A2 - 22)%, N odd.

1<j<k<(N-1)/2

6.(i) Let Q" be a quaternion real Hermitian matrix in which all entries are real, and let H be the
Hermitian matrix formed by replacing each quaternion element (1.39) by the scalar z + iw. Show that
Q" and H have the same distinct eigenvalues, and that the eigenvalues of Q" are doubly degenerate
sy ]
o) =,
Hence write down the eigenvalue p.d.f. of Q".

with eigenvectors of the form ¢ = [ where ¢ = [(j)gf) + iqbgf)]k:l,__,]v is an eigenvector of H.

(ii) Let Q be a N x N real quaternion Hermitian matrix. Proceed in a converse fashion to (i) to write
down a 4N x 4N real symmetric matrix R such that Q@ and R have the same distinct eigenvalues, and
thus the same eigenvalue p.d.f. Also, relate the corresponding eigenvectors. Similarly, for H a N x N
complex Hermitian matrix, replace each entry x + iy by its 2 X 2 real matrix representation

{ v ] (1.55)

Yy x
to obtain a doubly degenerate 2N x 2NN matrix for which the distinct eigenvalues coincide with those of

H.

7. Consider a quaternion real Hermitian matrix Q° in which all entries are pure imaginary so that Q'
is antisymmetric.

(i) With the pair of eigenvectors corresponding to the doubly degenerate eigenvalues \; denoted by u;

as in q.4, note from the theory of q.5(i) that 4 "*- is equal to the pair of eigenvectors corresponding to the
doubly degenerate eigenvalue —A;.

(ii) Use the fact that eigenvectors of an Hermitian matrix corresponding to distinct eigenvalues are
orthogonal to deduce that

N N
I b _ { 0 —2Im (zp;wp;) ] — { Zpj  Wpj ]

U U,; = u, U, = ) Ujp = * )
i pz::l pj =PI pz::l —2Im (zpjwp;) 0 ” Wy Zpj

and conclude from this that uJr du has only one independent component. Note too that uT diiy and

'u,jJr - di, are not independent.

(iii) With the analogue of the equation of q.3(ii) in the quaternion case modified as in the first sentence
of q.5(ii) (N even case), show from (i) that for an antisymmetric N X N quaternion real Hermitian matrix
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Q' diagonalized by Q' = ULU ™',

N/2 N/2
@@y = [ JI -2t A\ axn UtdU), N even
j=1 1<j<k<N/2 j=1
(N—-1)/2 (N—1)/2
@) = N NP -t [ an Wldu), Nodd.
Jj=1 1<j<k<(N-1)/2 j=1

8. [51] Let Q be a quaternion real matrix with the property that iQ is Hermitian.

(i) Note that Q must anticommute with the time reversal operator T = Z,n K, and use this to show
that if |¢) is an eigenvector of Q with eigenvalue X, then T'|¢) is an eigenvector with eigenvalue —\.

(ii) Proceed as in q.4 to show that with iQ diagonalized by iQ = UiLU", where
L= diag()\l, —)\1, ey )\N, —>\N),

and U is unitary with real quaternion elements in which all elements are real,

N

N
dQ)=TJe\)> I k=X A\ dr(Uuldv). (1.56)

=1 1<j<k<N =1

1.5 Gaussian S-ensemble

A familiar technique in numerical linear algebra is the similarity transformation of a real sym-
metric matrix to tridiagonal form using a sequence of similarity transformations involving re-
flection matrices, referred to as Householder transformations. Explicitly, let A be a real sym-
metric matrix [a;j]; j—1,..~y. Then one can construct a sequence of real orthogonal matrices

D, Uu®, ... UN? guch that
BW=2) — pIN=2Ty(N=3)T | T AWy ... y(N=-2) (1.57)

where BIN=2) 5 symmetric tridiagonal matrix, and

U = 127007 = | Lixi o Opev—g | (1.58)
ON_jxj V N_jxN—j

where @770 = 1 and V N—jxnN—j is real orthogonal (geometrically U® corresponds to a
reflection in the hyperplane orthogonal to @l )).

Consider first the construction of U, Choosing the components ugl) of 1) as

(1 _ (1) _ (L _ a2\)1/2 () _ __au
u =0, W) =[;(1 a)} ,ou) = ol 1>3) (1.59)

where o = (a3y 4 - -- + a?y)'/?, one can readily check that

BW .=y Au®™ (1.60)

has
b1 = a1, b2 = b1 = ¢, bir =bk1 =0 (k> 3)
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and is thus tridiagonal with respect to the first row and column. The matrices U( ), 71=2,3,.
in order are now defined by the formulas (1.59), but with u(l) = ugj) = .- (J) = 0, and

the analogue of the entries ay; replaced by the elements in the first row of the bottom right
N — j x N — j submatrix of B,

Trotter [201], and Dumitriu and Edelman [50], posed the question as to the form of B(N=2)
when A is a member of the GOE. It was found that like A itself, the elements of B(Y=2) are all
independent (apart from the requirement that B (N=2) pe symmetric) with a distribution that
can be calculated explicitly [201].

Proposition 1.11 Let N0, 1] refer to the standard normal distribution as defined below Definition
1.1, and let xy, denote the square root of the gamma distribution I'[k/2,1], the latter being specified
by the density (1/T'(k/2))uf/2~1e=% u > 0, and realized by the sum of the squares of k independent
Gaussian distributions N[0, 1/v/2]. (The density of % is thus equal to (2/T'(k/2))u*te ", u > 0.)
Then for A a member of the GOE, the tridiagonal matrix B (N=2) obtained by successive Householder
transformations is given by

[ N[Oa 1] XNfl
xv—1 N[0,1] Xn—2

)22 N[Oa ]-] )21
L >~(1 N[Oa 1] J

Proof From the Householder algorithm, the first row and column of BN=2) i the same as that of B
n (1.60), and thus from (1.59) we have

N-2
bi

Y% =NIo,1], = XN_1,

where use has been made of the assumption that A is a member of the GOE. To proceed further we must
compute the distribution of the bottom N — 1 x N — 1 block of BW . In general, denoting such a block
of the matrix X by X y_1, it follows from (1.58) that B\ | = VX | Ax_1V x_;. Since the elements of
the real orthogonal matrix V y_; are independent of the elements of Ax_1, whichisa N—-1x N -1 GOE
matrix, it follows immediately from the general invariance of the GOE under orthogonal transformations
that BEV) ;isalsoa N —1x N —1 GOE matrix. Applying the Householder transformation to Bg\,) 1
we thus get

B2 = N[0,1], b Y = tn s

Continuing inductively gives the stated result.

The result of Proposition 1.11 suggests investigating the Jacobian for the change of variables
from a general tridiagonal matrix

[ an bp_t 1
bp1 an-1 by 2
b2 aGpn_2 bp_3
T — (1.61)
bg a9 b1
L by ap |
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to its eigenvalues and variables relating to its eigenvectors. First, for each eigenvalue A\; and
corresponding eigenvector U, it is easy to see by direct substitution that once the 1st component

(1)

0’ =: g of Uy is specified, all other components can be expressed in terms of A; and the elements
of T. To make the eigendecomposition unique we specify that ¢, > 0, and furthermore note
that T, being symmetric, can be orthogonally diagonalized and so doing this we have

The Jacobian for the change of variables from
@:=(an,an_1,...,a1),  b:=(ba_1,...,b1) (1.62)

to
A= (>‘17"'7>‘n)7 i;: (QIa"WQH) (163)

can be calculated using the method of wedge products. However, one must first establish some
auxiliary results.

Proposition 1.12 Let (X);; denote the top left hand entry of the matrix X. We have

n 2
- q;
(T =) =) : ! S (1.64)
j=1
Also L9
n—1 72
2 H':l b;
[T =)= % (1.65)
1<i<j<n i=19;
Proof Now
(T -A1) Y =é - (T-A1)"te
where & := (1,0,...,0)T. Noting
n n
€1 = Z(él - U5) T = Zqﬂy
j=1 j=1
and substituting into the above equation gives (1.64).
To derive (1.65) we begin by recalling that in general for X a n x n nonsigular matrix,
_ det, anl
X NYy=——= 1.66
( Ju det X (1.66)

where X ,,_; denotes the bottom right n — 1 x n — 1 submatrix of X. Hence we can rewrite (1.64) to read

MO -A"Y) &~ 4
H?Zl(A—Ai) )\ Aj

(1.67)

where {)\En_l)} denotes the eigenvalues of X,,_;. It follows from this that

k
i =T n = [0

n
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where Py () is the characteristic polynomial of the bottom right k x k submatrix of T, T, say, and {/\5’“)}
the corresponding eigenvalues. Hence

T2 i [Paa (M)
I | q; = . (1.68)
Pt [TicicjcnAi = 5)?

Next, by expanding along the first row of A1, — T}, one obtains the three term recurrence
Pr(\) = (A —ag)P_1(\) — b7 1 Pp_2(N) (1.69)

and it follows from this that

H|Pk =5t H|Pk2

Since
k—1 k—1k—2 k—2
k— k—1 k—2 k—2
[T P =TT TN =221 = TP ) (1.70)
i=1 i=1 j=1 j=1

this can be rewritten as -
H |Pk()\l('k_1 2(k 1) H 1Pe i ( |
i=1
and iterated to give
H | Po( (n— 1) )| = H sz

Further use of (1.70) and substitution into (1.68) gives (1.65).

Proposition 1.13 The Jacobian for the change of variables (1.62) to (1.63) can be written as

LTI b
-—H%Li. (1.71)
Proof Rewriting (1.64) in the form
1-AT) =) —~—
(( )" ]2:; =0y

and equating successive powers of A on both sides gives
n n
L=2 a5 an=) aX, *+ ZW
j=1 j=1

n
*+ an_1bl_, :ZQ]Q)\?, *+ b _obp_y —Zq2>\4

j=1

* + ap_ob2 b2 1—Zq2)\5...,*+a1b%- b2 _ I—qu)\Q"H
j=1
where the * denotes terms involving variables already having appeared on the L.h.s. of preceding equations
(thus the variables ay,by—1,an—1,bp—2, ... occur in a triangular structure). The first of these equations

implies
n—1

(IndQn = - Z qdeJ"
Jj=1
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Taking differentials of the remaining equations, substituting for g,dg,, and then taking wedge products
of both sides (making use of the triangular structure on the L.h.s.) shows

n—1 n—1
[I 05 “dadb =g ]| 4] det {[/\] iz [j/\fl]’il;i;:f“f;l]dAdq
j=1 j=1
where )
da := /\da], db:= )\ db;, d\:= /\dAJ, dg == /\ dg;.
j=1 j=1 j=1 Jj=1

The determinant can be evaluated (see Exercises 1.5 q.2) thus showing the Jacobian J can be written

n—1 n 2
J_injzl b]-( -1 9 )2 I =2
— n ] 1,25—1 7
an szl 4q; H;L 1 b]j 1<j<k<N

Recalling (1.65) shows .J is equal to (1.71).

Using Proposition 1.13, the fact that the tridiagonal matrix of Proposition 1.11 has the
same eigenvalue p.d.f. as GOE matrices can be directly verified. Moreover, one can prescribe a
tridiagonal matrix with eigenvalue p.d.f. (1.47) for general 5 > 0 [50].

Proposition 1.14 In the notation of Proposition 1.11 define the symmetric tridiagonal matrix

N
®
Il

N[0, 1]
X(N-1)8

X(N-1)8
N[0, 1]

X(N—-2)8

X(N—-2)8
N[0, 1]

X253

X(N-3)3

N[O.,. 1]

X8

X3

NJ0,1] |

(1.72)

The eigenvalues and first component of the eigenvectors (which form the vector ¢) are independent,
with the distribution of the former given by

1N - r(1 2
. N2 T = APdN, Gy = (202 H + G+ 1B/ ), (1.73)
G ! 1+ 3/2)

BN =1 1<j<k<N Jj=0

and the distribution of the latter given by
N N
r 2
H b- 1dq, q; >0, qu =1, where cgy = (5/2) (1.74)

CONGN i) = 2N-IT(BN/2)

Proof Denote the joint distribution of T3 by P(T'3). We have

2N71

(2m)N/2 H 'pi/2)

N 2 2
H e 172" e dadb
=1

P(T3)(dTp)

I N— 1 31
N2 H L LS U ety
(2m) INCIYPANITN Hl L
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But
N

N 2 N—
LT S S ) (R
=1 =1  1<i<j<N
where the latter formula follows from (1.65), so indeed the dependence on A and ¢ factorizes into the
functional forms specified in (1.73) and (1.74). The normalization for (1.74) follows from the Dirichlet
integral [211] (see also Section 3.5.1 q.3)

/ d ﬁ si—1 __ ) i 'F(Sn+1) (1 75)
En+1 Pi:17pi>0 fr Pi 31 i Sn+1) ’

i=1

with n = N — 1, s; = f and the change of variables p; = q§/2

value of Gz follows.

. With this normalization specified, the

We remark that the evaluation of é’gN given in (1.73) implies, after a simple change of
variables, that the normalization constant in (1.47) has the evaluation

Gay = B~ N/2-NBW -1)/4 (o) N/2 H 1+(J+1)5/2)_ (1.76)

I'(1+5/2)
Another point of interest is that the recurrence (1.69) with

ay, € N0, 1], b2 € T[kB/2,1] (1.77)
can be used to generate the characteristic polynomial for a member of the Gaussian -ensemble,
so the p.d.f. (1.73) can be sampled by simply computing the zeros of this polynomial.
Exercises 1.5

1. The objective of this exercise is to derive the Vandermonde determinant evaluation

1z a3 - g 1
1 @y 23 - @y
detfe¥ o v =1 . T = I e —ap). (1.78)
S 2 . '_ 1<j<k<N
1 zy oy 0 zy

(i) Verify that both the determinant and product of differences are antisymmetric polynomials which

are homogeneous of degree %N(N — 1) and hence must be proportional.
(ii) Show that the proportionality constant is unity by comparing the coefficients of the term 2%z} . .. m%_l

on both sides.
2. In this exercise it will be shown that

det I:P\i — )\J]J 1 ...,2n 1 []}\] ]J k1:.1..,2n71j| = H (>\k — )\j)4.

1<j<k<N

(i) Show that both sides are homogeneous symmetric polynomials of degree 2N (N — 1), and that the
determinant and its first three derivatives with respect to Ay vanish at \y = \o. Conclude from this that
both sides must be proportional.

(ii) Show that the proportionality constant must be unity by comparing coefficients of (A9\} -+ AY 1)
on both sides.
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1.6 Coulomb gas analogy

The eigenvalue p.d.f. of (1.73) is, up to a simple scale factor, identical to the eigenvalue p.d.f. (1.47)
which for 8 = 1,2 and 4 is realized by the GOE, GUE and GSE respectively. Comparison of
(1.47) with (1.6) shows immediately that the eigenvalue p.d.f. is identical to the Boltzmann
factor of a one-component log-potential Coulomb system confined to a line, with the position of
the charged particles corresponding identically to the location of the eigenvalues. Furthermore,
the background charge density —qp,(y) is such that

562

S+C= [ mlogle —yldy, (1.79)

where C is a constant.

Note that it is not possible to satisfy (1.79) for |z| — oo, since in this limit the r.h.s. is to
leading order N log|z| and is thus a different order to the L.h.s. Instead we seek to solve the
integral equation for py(y) with support on the finite interval (—a,a) say, and z confined to the
same interval. Then (1.79) reads

:EQ

a
5 TC= [ mylogle —yldy, =€ (-aa) (1.80)
—a
The solution of the equation can be computed exactly by the method of eigenfunction expansions
(see e.g. Porter and Stirling [176]).

Proposition 1.15 Suppose all the eigenvalues {\,},=0,1,.. and corresponding normalized eigen-
functions {¢p }n—0,1,.. of a linear operator A are known, all the eigenvalues are nonzero, and that
the eigenfunctions form a complete set. Then the operator equation g = Af, where g is given, has
the solution

fo e lalon)

n=0 An
where (| ) denotes the inner product.

Proof Since the eigenfunctions form a complete set, g = Y o0 (gldn)dn Also f =300 (f|én)d, and
so Af =300 ((fldn)Anén. The result follows by equating the coefficients of ¢, in the operator equation.

To make use of this method, it is necessary to make the further change of variables
Yy = acosb, T = acos o, sin @py(a cos @) =: ap(cos h)

so that (1.80) reads

1 1 N C ™
7 ¢os 20 — (Z -3 loga + ¥> = —/0 log| cos @ — cosa| p(0) db. (1.81)
Note that cos @ —coso = 2sin(o —0)/2 sin(o +6)/2. Since 2|sin(o — ) /2| gives the chord length
for two points on the unit circle with angles o and 6, the r.h.s. of (1.81) can be interpreted as
giving (up to an additive constant) the electrostatic potential at the angle o due to a charge
density ¢(f) and ¢(2m — @) between 0 and 7 and 7 and 27 respectively on the unit circle.



34 CHAPTER 1. GAUSSIAN MATRIX ENSEMBLES

The eigenvalues and eigenfunctions of the integral operator
Al](o) = —/ log | cos 6 — cos o|¢(8) db (1.82)
0

are known (see Exercises 1.6 q.1). They are

™

1 9 1/2
do=mlog2, 0() = =5, A=, ¢n(9):<;> cosnf (n=1,2,...).

In terms of these eigenfunctions
1
1 1 N C 1 /m\2 1 N C\ 1
1 cos 20 — (Z — ﬁloga—i— ﬁ) =-2 <§> p2(0) — (Z — ﬁloga—i— p) w2 ¢o(0),

and so from the general formula of Proposition 1.9 the solution of the transformed integral
equation is

»(0) = 21 (cos20 — 1) —

™

L (Y gas G o)
—— —<loga+—=+-lo
wlog2 \4 a2 & a2 384
where 1/27 has been added and subtracted for latter convenience. Reverting back to the original

variables we obtain the following result.

Proposition 1.16 The solution of the integral equation

$2

a
?—i—C: pp(y)loglz —y|dy, —a<z<a
—a
is
_a N

1 (y>2 ! (1 loga+ & + 11 2> a4
=) - —— —<loga+—=+=1lo —_— .
T a wlog2 \4 a? & a2 208 V1= (y/a)?

oo(Y)

We see that there are two drastically different classes of solution depending on the value of
C'. Unless we choose
a2 a2
C:Nloga—z—310g2 (1.83)

the density profile p,(y) has an inverse square root singularity at y = +a. However, choosing C
according to (1.83) the term proportional to (1 — (y/a)?)~ /2 vanishes and a physically sensible
result is obtained. Making this choice of C' and fixing a by the neutrality condition [ pp(y) dy =
N gives the desired analogy between the Boltzmann factor of a one-component log- potential
Coulomb system and the eigenvalue p.d.f.’s of Proposition 1.8.

Proposition 1.17 The Boltzmann factor of the one-component log-potential Coulomb system
with particles of charge g =1 at x1,...,zN, confined to the interval [—v/2N,v/2N| with a neutral-
izing background charge density

V2N ) y2

—pp(y) = — - TON’

is
N
Aexp (—§Z$?) H lop —24]°, A =exp (—’32]2 log(N/2)+358NZ> .

1<j<k<N
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density

Y

Figure 1.1: Empirical demonstration of the Wigner semi-circle law for 10 x 10 matrices from the
GUE

Proof In the general formula (1.6) for the Boltzmann factor of a one-component log-potential Coulomb
system, 7, = x, and from Proposition 1.16 and (1.83) with a = V2N

V(z) :%2+4N Glog\/ﬁ—é)

and
, [N2 [, 5 (1 1
Us=—q¢° | — z°V1—22dx + 2N Zlog\/N/ Ik
T J

A simple change of variables = cosf shows that the integral in the above equals 7/8. The stated
formula for the Boltzmann factor follows.

Proposition 1.17 can be used to predict the eigenvalue density profile for Gaussian random
matrices. Physically, we expect that to leading order in N Coulomb systems are locally charge
neutral, which for a one-component system implies that to leading order the particle density
will equal the background density. (This statement is put on a more mathematical footing in
Exercises 7?7 q.4 below.) For the log-potential system of Proposition 1.17 this gives the particle

density as
V2N y?
= 1—- = 1.84
ply) = — o (1.84)

But the statistical properties of the log-potential system in Proposition 1.17 are identical to the
statistical properties of the eigenvalues of the Gaussian random matrices, so we expect that the
eigenvalue density profile will to leading order in N be given by this formula, which is known
as the Wigner semi-circle law. An alternative approach to this result, which avoids physical
reasoning, is given in Exercises 1.7 q.1.

In Figure 1.1 we have plotted the empirical eigenvalue density for 1000 10 x 10 matrices
from the GUE, using the variable Y = y/v/2N. The accuracy of the Wigner semi-circle law is
evident.
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1.6.1 The complex electric field and calculation of p,(y)

The integral equation (1.80) is the special case V (z) = 2/2 of the integral equation

V() +C= [ pl(y)loglz —yldy, =z € (—a,a). (1.85)
We seek the solution such that py(y) is bounded at y = £a and normalized so that

a

pb(y) dy = N. (1.86)

—a

If the primary concern is the calculation of py(y) and not C, an alternative to the method of
eigenfunctions used above is to introduce the complex electric field

E(z) :=— aa gbfy; dy. (1.87)

Note that for z ¢ [—a, a], E(z) is analytic and has the asymptotic behaviour
N

E(z) ~ ——, (1.88)
|z| 200 Z
while for z ~ +a, by the assumption that py(y) is bounded,
E(2) D O(log(z F a)). (1.89)
Furthermore, it follows by Cauchy’s theorem that
ET(z) — E~(z) = 2mipy(z), z € (—a,a), (1.90)
where
E*(z) = lim E(z + ie),
e—0t
while (1.85) gives
1
Re E(z) = §(E+(x) +E (2)) = -V'(2), for = € (—a,a). (1.91)

The properties (1.88) through to (1.91) can be used to characterize E(z). For the quantity
W (z) := e”(?) these properties specify a scalar Riemann-Hilbert problem.

Restricting attention to potentials V' (z) even in z, one can check that the function

E(z) = —%\/22 ) / — t‘)f% dt, (1.92)

with ¢ such that

1 e V()
— ———dt=N 1.93
T J—a V a? — t2 ( )

has the properties (1.88) through to (1.91) and is thus the sought complex electric field. In
particular, to verify (1.91), we note that (1.92) gives

] ¢ V'(t)
Et(z) = F2va2 — 22 lim / dt 1.94
(z) T =0t /o (z £ie — t)Va? —t? (1.94)

and then make use of Cauchy’s theorem. Using this formula in (1.90) gives an explicit formula
for py(z) in terms of the potential V' [159].
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Proposition 1.18 In the case V (x) even, the solution of the integral equation (1.85) with py(y)
bounded at y = +a and normalized as in (1.86) is

p(y) = %\/cﬂ —y? /_aa V,(yy) — Z/,(t) \/ﬁ dt, (1.95)

where a is specified by (1.93).

Proof After substituting (1.92) in (1.90), we subtract an appropriate multiple of the identity

@ 1 @ 1
li dt — dt) =0
f%([a (x +ie —t)Va® —t2 /—a (x —ie —t)VaZ —t2 )

from both sides to obtain

. . o
2mipy(x) = —%\/ a? — z2Re lim Vi(t) = V(=) dt.

=0t J_, (x4 ie — t)Va® — t?

The limit can be taken inside the integrand because the numerator vanishes for x = ¢, giving (1.95).

In the special case V(y) = y2/2, (1.95) gives

po(y) = %\/1 — (y/a)?,

while it follows from (1.93) that ¢ = V2N, in agreement with (1.84). The generalization of
(1.95) for V(z) not necessarily even is

b /! 1
o) = /==y [ O (1.96)

where ¢ and b are such that

dt = N, (1.97)

b V'(¢) 1 b V'(¢)
[ weo, L[
a V(t—a)(b—1t) mJa /({t—a)(b—1)
as can be checked from a similar analysis.

It can happen that the solution (1.95) or (1.96) of (1.85) does not in fact correspond to the
background density because it becomes negative within the interval (—a,a). An example is the
potential V (z) = —cz? + gz for ¢ large enough. The formula (1.95) gives

1
= —(—2c+ 2ga® + 4gy*)\/a? — y? 1.
poly) = —(=2c+2ga” +4gy”)\/a® —y (1.98)
where, according to (1.95),
4
—ca® + 3gTa = N. (1.99)

The solution (1.98) will take on negative values whenever ¢ > ga?. According to (1.99), for this
to happen it is sufficient that ¢> > 2¢gN. In such a circumstance, the original assumption that
the support is on a single interval breaks down, and one must seek a solution supported on a
double interval (—a2, —a1) U (a1, as).
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Exercises 1.6

1. (i) Assuming the validity of the formula

o0 n
; a™ cos nx
log|1—ae”|:—§ _, 0<a<l, z€eR
n

n=1

for a = 1 provided x # 0 mod(27), deduce that

log |2sin(z — 1)/2] = = 3 cosn(z —1t)
n

n=1
for x — t # Omod(27) and write down a similar formula for log |2sin(z + t)/2|. Hence derive the cosine

expansion
(oo}

2
log(2| cosx — cost|) = — Z — cosnz cosnt. (1.100)
n

n=1
(ii) Use the above cosine expansion to verify that the eigenvalues and normalized eigenfunctions of the
integral operator

Ald](0) := — /07T log | cos 8 — cos o|h(0) df

are as specified below (1.82).

2. The objective of this exercise is to compute the background density and the Boltzmann factor for
the one-component log-potential system confined to the interval (—a,a) with one-body potential

z? zt

V(z) =5 +95 +C (1.101)

This calculation is of interest in the graphical expansion of matrix integrals [31, 219], and will be used in
this context in the next section.

(i) WithY = cos# verify that
cos4f — 1

= —8Y2(1 - Y?)/2,
sin 6 8Y( )

(ii) Use the eigenfunction expansion method, the result of (i) and Proposition 1.16 to show that the
solution of the integral equation

V@ = [ mwlogls-yldy,  —a<z<a
which is bounded at y = +a is

o) = 2 (14 20+ 200) T /a2

provided
2

1 N 1 3ga 3ga®
— 2 (- _ T —
C= a( 210ga+210g2+ 3 + 5 log2 ] .

(iii) Use the neutrality condition to show

a’  3ga*

2+2N

- N, (1.102)

and use this in the formula for C' to obtain the simplification

a? a N
=——+ Nlog—- — —.
C 8+ 0g2 1
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(iv) Use the trigonometric Euler integral in Exercises 3.1 q.1(i) below and the neutrality condition to
show

and thus
Uz +Us)/q* — (U2 + Us)/QQ‘ .
9=

N 2
=% > - NT {i((a/\/ﬁf —1)(9 — (a/V2N)?) —log(a/V2N)|, (1.103)

where (Us + Us) /qQ‘ is as implicit in Proposition 1.17.
g=0

3.(i) For a general potential u(z), use the eigenfunction expansion method to show that the solution
po(y) of the integral equation

a

w@)+C= | p)logle —yldy, @€ [-aal, (1.104)

—a

which is bounded at y = £a can be written
2 T
pb(acosﬂ):—m;p(/o u(acosa)cospada)(cospt‘)—l).

(ii) For u(x) = 2®", n € Z", use the integration formula
T T 2n
/ cos>™ o cos 2po do = T( ),
0 22" \n+p
verified using complex exponentials, and the transformation identity

1 & 2n \ 1 — cos 2pf _ "L r2(n—1) 2(1-1)
( )7 ; ( )(2 cosf)

%pzlp n+p/ 1—cos2é n—1I

to show that [32]

o dn a2 (SN 2(n — 1)y 22\ 20D x\2
ple) =2 (3) (;( w1 (%) ) - (3)
Check that this is consistent with py(y) in q.2(ii).

4. In this exercise the location of the minimum of the function

N
1
H(zy,...,xzN) =3 E a — E log |z — ;|
=1 1<j<k<N

will be determined by following a calculation of Stieltjes [191]. This gives the equilibrium points of the
system of Proposition 1.17.
(i) Show that H is convex by establishing that for t; # 0 (j = 1,...,N), E;.\;kzl tjtk% > 0, and
conclude that H has a unique minimum.
(ii) Let g(z) = Hfil(m - a:l(o)). Show that the equations for the minimum 0H/0z; =0 (j =1,...,N)
can be written

9"(x;) = 22;9'(x;) =0 (j=1,...,N)
(iii) Observe that the Lh.s. of the above equation is a polynomial of degree N which vanishes at the
zeros of g(x), and so must be proportional to g(z), to deduce the d.e.

9" (x) — 2xg'(z) + 2Ng(z) = 0.

Hence show that the minimum of H(xy,...,xN) occurs at the zeros of the Hermite polynomial Hy(z).
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1.7 Matrix integrals and combinatorics

1.7.1 Combinatorics of (Tr(X?*))qup-

In this section we put our knowledge of the asymptotic density for the GUE to use in the solution
of a combinatorial problem. It has long been known [31] that the matrix integrals

[ £ T2 ax)

for X a particular class of matrices and suitable f(X) have combinatorial significance in that
they count certain diagrams embedded on surfaces according to their genus. Here, following
[221, 84], we will detail such a combinatorial interpretation of the matrix integral

[ X DX = (TR (X)) e (1.105)

where it is assumed (dX) is normalized, and GUE" is identical to the GUE except that X —
X /+/2. By changing variables X = ULU ™! to the eigenvalues and eigenvectors we see from
the result of Exercises 1.4 .3 that

1 [ o0 N Y N
(Tr(X2%))qug- = 5/ d>\1---/ diy [ e AM?(ZA?’“) I 1A —X%  (1.106)
- o I=1 j=1 1<j<k<N

Changing variables \; — v/2); we see from the definition (1.15) that in terms of the density
pa)(A) for the GUE we have

(DX =2 [~ Mo (3) (1.107)

However it is not from (1.106) that the combinatorics arise; this comes from the evaluation of
(1.105) as a Gaussian integral over the independent elements of the matrix X. The latter task
can be achieved by using a particular matrix version of Wick’s theorem.

Proposition 1.19 Let X = [ij]j’kzlym’]\r, Zjk = Tjk + iyjk be Hermitian so that
STH(X2)/2(gx) — Ao TH(X2)/2 ¥
(d ) = 56 H dxjj H d(IIjkdyjk.
Jj=1 1<j<k<N

Let I be a finite ordered set of pairs of indices (j, k), 1 < j,k < N, and let P denote a matching
of the elements of I in pairs. Then we have

(I #i)pe = = I (v (1.108)

(i.4)el pairives (i,7), (k.l)

=1,...,

< H Zij>GUE* B <(1—[e 83ji><eTr(YX)>GUE*‘Y:0' (1.109)
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But since
TrX? -2Tr(YX)=Tr((X —-Y)}) -TrY?

we see from the change of variables X — X + Y that

N
<6Tr(YX)>GUE* — oTr(Y?)/2 _ H oW3i/2 H Wik Whj

i=1 1<j<k<N

Thus (1.109) gives

IR DR | g

(i.4)el PaIrings (i,5), (k,l)

which reduces to (1.108) after noting

(zijzr)GUE* = 6i40jk- (1.110)
Our task is to compute
N

(Tr(XQk»GUE* = < . Z ZiyiaZigiz """ Zi2k71i2kzi2kil>GUE*' (1.111)

T1yeenylop=1

According to (1.108) we have
N
(Tr(X*M))qups = > > II (21, Zigiy ) GUE® (1.112)
il,...,izk pairings P of ( ),(l l’)

{(ll i2),(i9,i3),--,(ing i1)}

and (1.110) shows that various labels must coincide for a given term in this expression to be
non-zero. For example, with k = 4 consider the particular term in (1.112)

(Zi1i2 Zi3i4> (Zizi:;zigil > (Zi4i5 Zi6i7> (Zi5iszi7i8> = (6i1 ,i46i2 RE! ) (6i2 yi1 6i3,i8) (5i4 ,i75i5,i6) (6i5,i8 6i6,i7 )

(1.113)

For this to be non-zero we must have iy = i = - - - = g, giving only one independent label. As
another example, consider the term

(Zivis Zigis ) (Zinis Zigia) (Zisis Zisia ) (Zisir Zizis) = (0irisinis) (inia) (9isi digis ) (Jigis) (1.114)

which is non-zero for i; = 15, 15 = 14, 16 = ig giving five independent labels i1, 49,13, 76, 27 say.

In general the non-zero terms in (1.112) can be represented graphically in two related ways,
both of which involve a regular 2k-gon, with the vertices labelled 41,...,%9,, and the edges
orientated clockwise. One method to carry out the pairing between consecutive vertices (i;, )
and consecutive vertices (i;,4y,) is to join the corresponding edges on the 2k-gon according to
the rule that edges must be joined in opposite directions (see Figure 1.2 for this representation
of (1.113) and (1.114)).

Another approach to carry out the pairing is to draw a straight line segment perpendicular
to and outwards from the ends of each edge of the 2k-gon. These segments are to be given
the directions of out and in alternately around the 2k-gon. Then each non-zero contribution to
(1.112) can be represented by joining different pairs (i;,i;) and (¢;,%,,) of parallel straight line
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Figure 1.2: Graphical representation of the contributions (1.113) and (1.114) respectively. The
heavy lines identify edges and the dot marks the location of the vertex labelled i1, with the
other vertices labelled clockwise.

-
e hol
Q

Figure 1.3: The dual graphical representation of Figure 1.2 for the contributions of (1.113) and
(1.114) respectively. The dot marks the location of the vertex labelled i1, with the other vertices
labelled clockwise.

segments to form roadways (see Figure 1.3 for this representation of (1.113) and (1.114)). Note
that the joining is such that edges of the roadways have definite directions.

The diagrams of Figure 1.2 can be catalogued according to the number v of independent
vertices after pairing. This of course is just the number of independent summation labels in

(1.112) so we can write
k+1

(Te(X*)) e = Y ay(k)N” (1.115)
v=1

where a, (k) denotes the number of different pairings which have v vertices. On the other hand,
the diagrams of Figure 1.3 are topological duals of Figure 1.2 with the v independent vertices of
the latter now v independent faces. These can be determined by following the edge of a roadway
and its continuation according to its direction, until arriving back at the starting point. The
formal meaning of the faces is obtained by shrinking the width of the roadways in Figure 1.3
to single lines, at the same time as shrinking the 2k-gon to a single vertex so the lines become
loops, then embedding the diagram on a closed surface as a map.

Definition 1.9 A map is a graph (i.e. collection of vertices and edges) drawn on a closed surface
such that the edges do not intersect and, if we cut the surface along the edges, a disjoint union of
sets topologically equivalent to an open disk results. The number of such disks is by definition the
number of faces of the map.

It is similarly the case that the number of independent vertices in the diagrams of Figure 1.2
can be specified in terms of the corresponding map.
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=0 €

Figure 1.4: Embedding of the graphs of Figure 1.3 (after shrinking the k-gon to a single vertex,
and the roadways to single lines) onto a closed surface to form a map with a single vertex.

The index v in (1.115) determines the genus g (number of holes) of the closed surface. This
follows from Euler’s relation
2-2g=V -—E+F (1.116)
where V' denotes the number of vertices, E the number of edges and F' the number of faces. In
the diagrams of Figure 1.2 V = v, F =1 and E = k, while in the diagrams of Figure 1.3 the
role of V and F' is interchanged so that V' =1, F = v and E = k. Either way (1.116) gives

v=k+1-2g. (1.117)

As shown in Figure 1.4, the diagrams of Figure 1.3 can be directly embedded on a surface,
thereby illustrating (1.117) (thus in the first case £k = 4, v = 1, g = 2 while in the second case
k=4,v=5,9g=0).

Using (1.117) in (1.115) gives

(k/2]
(Te(X*))ques = NS appi_og (k)N 9. (1.118)
g=0
In particular
lim N7*NTe(X*))ques = apqa(k) (1.119)

N—o0
where ay1(k) denotes the number of matchings of the 2k-gon which are planar (i.e. can be
embedded on the surface of a sphere, which has ¢ = 0). Substituting for (Tr(X%¥))qug- using
(1.106), and then substituting for p(;)(z) using (1.84), evaluating the integral using (3.3) below
and simplifying the resulting gamma functions using the duplication formula

227ID(2) (2 + 1/2) = ©'/?T(22), (1.120)
one finds . ok

This number is familiar in combinatorics and is called the kth Catalan number. In fact (1.121)
can easily be derived without using (1.107), which then has the significance of providing an
alternative derivation of the Wigner semi-circle law for Hermitian matrices (1.84) (see Exercises
1.7 q.1). However this is not the case for the coefficients aj_1(k),ar_3(k), ... for which the use
of (1.107) is the most efficient. We will return to the evaluation of these numbers in Chapter 4
when the exact value of p()(A) is available.

We remark that (Tr(X?¥))gor allows for a similar combinatorial description in terms of
maps on surfaces, although now the surfaces may be nonorientable (corresponding to graphs
with twisted ribbons) [134].
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1.7.2 Combinatorics of the § = 2 partition function with a general power
series potential

Closely related to the combinatorial interpretation of (1.105) is the combinatorial interpretation
of

~({g;}) <He =i ,/ng/271>GUE* (1.122)

when expanded in a power series in {g;}. For the latter, expanding the exponentials gives

00 N \
Zn({g;}) = Z H nm,N]/Q 1<H(2§x{) D vee (1.123)

n1,n2,.. Jj=1 =

while for the average we have

( ﬁ (ix{)n]—%m* =( lo_o[ (X)) (1.124)

=1 =1 j=1

From the discussion of the previous subsection we know how to give a combinatorial interpre-
tation of (1.124) in the special case n;, = 1, nj = 0 (j # k). A natural generalization of this
interpretation extends to the general case [221, 84].

Each factor of Tr X7 is represented as a j-gon with vertices labelled i1, i, . .. ,ij clockwise,
starting at a marked vertex. These labels on vertices extend to labels on pairs of oppositely
directed roadway edges coming into and out of each vertex. Whereas in the case of a single factor
of Tr X/ the combinatorial interpretation of computing (1.124) via Wick’s theorem involved
connecting roadways within the single j-gon, the graphical representation of contributions to
(1.124) is to connect roadways amongst or within any of the n; j-gons (j = 1,2,...). The
resulting structure, referred to as a labelled fatgraph, has weight N” where v is the number of
faces (which in turn is equal to the number of unpaired labels). The number of edges is equal
to E‘;’;l jnj/2 which is required to be an integer, while the number of vertices — defined as the
number of j-gons — is equal to 3372, n;. Recalling Euler’s relation (1.116) we see that (1.124)
can thus be written

o.¢] o.¢]

ZIn({gih) = > (H im; ,) Zag {n;})N?>29,

ni,n2,...=0 j=1

where ay4({n;}) is the number of labelled graphs constructed out of n; j-gons (j = 1,2,...)
which can be embedded on a surface of genus g.

The various j-gons in the labelled fatgraph will not in general be connected. However as
Zn({gj}) is an exponential generating function for these quantities, it is a well known fact
that taking the logarithm restricts to connected components (recall Exercises 1.1 q.6). Thus,
denoting this restriction by an asterisk, we have

log Zn({g;}) = D (Hjngj—ﬁj,)Z*ag({nj})NZ—Zg. (1.125)
ni,na,...=0 j=1 g

Fatgraphs which are topologically equivalent define a class of maps I'. For each class the maxi-
mum value of ag({n;}) is [[;2 j" n;! and furthermore [172, 7" n;!/ay({n;}) is an integer written
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<— O

Figure 1.5: There are three classes of fatgraphs which can be constructed out of two 4-gons.
An example from each class, together with the corresponding map is given. For the first class
|Aut I'| = 8, while for the second and third class |AutI'| = 2.

as |[AutT'|. As the notation suggests, |AutT'| is in fact equal to the order of the group of auto-
morphisms associated with I'. This can be specified as the number of equivalent labellings of
the faces of I', which means the number of different labellings in the plane which result from
topological transformation of the map on the sphere.

In terms of [AutI'| (1.125) reads

1 _ 0T Vi(D)
N229(D) & 1.12

log Zn({g;}) = >

connected I

where n; in (1.125) has been written V;(T'") in (1.126) to emphasize that it counts the number
of vertices with coordination number j in the corresponding map. In particular

connected I'
g(I')=0

_ LR » A
A}gnoomlogZN({gy})— Z mjl—[lgj ) (1.127)

and thus we obtain a generating function for maps weighted according to the coordination
number of the vertices. To illustrate (1.127), in Figure 1.5 we display the contributions to the
coefficient of g2 in terms of fatgraphs, the corresponding maps and their duals.

Suppose g; = 0 for j # 4. From the definition (1.122) we have

1 N 4
_ : - /4N
9;=0 (#4)) = g g los < [J e >GUE*

) 1
am 5 log Zy ({g]} 1
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1 A
= lim mlog<Heg4$l/N>GUE. (1.128)

N
—00 I=1

To evaluate this limit we make use of the log-gas interpretation of the average as a ratio of con-
figuration integrals relating to one-component log-potential systems with particular neutralizing
background charge densities. The Boltzmann factor for these systems contains constant terms
(i.e. terms independent of the particle coordinates) which are not present in (1.128). If these
terms, Ay say, were included its logarithm would then be expected to be proportional to IV as
according to (1.8) the difference between two free energies is being calculated. Thus one expects

1

Jim stogZy ()], ) = Jim 5 tos 5

N2

The value of 1/Ay has been calculated in Exercises 1.6 q.2(iv). It is equal to the exponential of
the z; independent terms in (1.103) with ¢ in (1.102) replaced by —g4. This gives

1 1

lim ———logZﬁv({g]H J¢@) (24(u-—])(9——u)——§logu) (1.129)

where wu is defined in terms of g4 as the solution of
u— 3gqu’ =1, u—1as g4 — 0. (1.130)

According to the result of Exercises 1.7 q.1
<1 2% A

= — — 1.131
w= =2 gy ) 6o (1.131)

After substituting this in the r.h.s. of (1.129), and substituting (1.127) in the L.h.s, the following
result is obtained [31].

Proposition 1.20 We have

1 A > (2k —1)!
2 |Aut F|94V D= M(i’m)k- (1.132)

connected I'
g(T)=0

Proof The remaining task is to expand the functions of u on the r.h.s. of (1.129) as power series in gy.
For the quadratic, this is immediate from (1.131) and (1.130). For logu this follows from the result of
Exercises 1.7 q.3.

Let us denote the coefficient of g¥ in (1.132) by a;, which then represents the number of
(weighted) planar fatgraphs that can be constructed out of k£ 4-gons. Making use of Stirling’s
formula

T(z+1) ~ (21z)"/2ev 0822 as x — 00, Re(z) >0, (1.133)
shows that
12k

e~ K721
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The particular value of the exponent of the algebraic term k~7/2 has meaning in the conformal
field theory associated with the graphical expansion [84].

If we cut an edge in any of the planar maps giving rise to (1.132), we obtain a planar fatgraph
contructed from 4-gons, but now with two external legs in the same face. The external legs,
when distinguised by different labellings, break the symmetry of the maps, so for all classes 'y
of such maps |I'y] = 1. Because the legs have been disguished, and because there are twice as
many edges as vertices, one sees [86]

G=1+ 4g4iG
094

where G denotes the generating function for the maps with external legs, and G denotes the
Lh.s. of (1.132). Substituting the r.h.s. of (1.132) we see that the power series of G has positive
integer coefficients, as it must. In particular, the coefficient of g7 is 9. One contribution results
from the first map in Figure 1.5, while four result from each of the other two maps therein.

Exercises 1.7

1. Here the number ¢y, := ayy1(k) of diagrams which can be constructed from a 2k-gon according to
the prescription of Figure 1.2, and which contain no intersecting lines, will be computed directly.

(i) Suppose the lines from edge 1 join the lines from edge 2j (j = 1,...,k). Argue that inside these lines
there can be cj_; configurations of the allowed type, while there are cy_; configurations of the allowed
type joining the edges 25 + 1,...,2k. Hence deduce that

k—1
Cp = ZCjck_l_j, Cp = 1. (1.134)
7=0

(ii) Verify that the Catalan numbers solve this recurrence.

(iii) Introduce the generating function C(t) = 3, ctk. Use the recurrence (1.134) to show that C(t)
satisfies the quadratic equation

Ct)=1+tC(1))?, (1.135)

and consequently has the explicit form

1O(t) = %(1 ~(1— 4172, (1.136)

(iv) With the value of ay4+1(k) known independently of the average in (1.119) according to the result of
(ii), use (1.107) to deduce that the scaled density

Py () = Jim V2/Np)(V2Nz) (1.137)

is such that - ) ok
2k 2%k ~ _
2 /_ooa: p(l)(w)dw—k+1(k)

while the odd moments vanish.
(v) A sufficient condition for a density function to be determined by its moments {cg,c1, ca, ...} is that

oo
thk

B
k=0

(1.138)
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T VAN

Figure 1.6: The arch configuration equivalent to the second graph in Figure 1.4.

converges for some t > 0 (this implies the Fourier transform of the density function is analytic in the
neighbourhood of the origin). Verify that this is the case for the moments in (iv). Now use the fact that

- [ 2 -2, jz <1
Py () = { 0, |z > 1 (1.139)

reproduces these values to conclude from (iv) that this is the explicit form of p(1(x).

2. Show that the planar graphs drawn on the 2k-gon as illustrated in Figure 1.3 can equivalently be
represented as a system of k non-overlapping arches connecting 2k points in the line (see Figure 1.6 for
an example).

3. [211] Let f(z) and ¢(z) be analytic in a neighbourhood Q of z = a. According to the Lagrange

inversion formula, for ¢t small enough that |t¢(z)| < |z — al, z € Q, the equation ( = a + t¢(() has one
solution in §2, and furthermore

+Zt” P (F@G@)").

n! da™—1

Use this formula to show that for x defined as the solution of the equation x = 1+ yaP with the property
x— 1 asy — 0, we have

oo

(kp — 1)! g
loga:—zk' (op — ).

1.8 Convergence

Consider for definiteness GUE matrices. As stated the Wigner semi-circle law tells us the leading
large N form of (% Z;-V:l d(y — Aj))qur. As the normalized empirical density integrated over
an interval [a,b] is the proportion of eigenvalues in that interval, #]a,b] say, equivalently the
Wigner semi-circle law tells us the expected value of this quantity when averaged over GUE
matrices. Indeed this was how Figure 1.1 was produced, with the theoretical means in each bin
of the bar graph substituted by their empirical averages.

What if instead one considers #[a, b] for a sequence of single n x n, n = 1,2, ..., each chosen
from the GUE. Does the resulting sequence of values for #|a,b] converge to that predicted by
the Wigner semi-circle law? And what is the meaning of convergence in this setting? Regarding
the latter point, two possiblities are convergence in probability, and almost sure convergence.
Convergence in probability says that for a given ¢ > 0, and sequence of single n x n GUE
matrices (n =1,2,...), Pr(|un, — p| > €) — 0, where pu,, is the empirical value of #[a, b] for each
matrix, and g is the limiting ensemble average (i.e. the value implied by the Wigner semi-circle
law). Almost sure convergence says that the measure of the sequence of matrices for which
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tn — i is equal to 1. A well known consequence of the Borel-Cantelli lemma in probability
theory (see e.g. [26]) is that almost sure convergence is equivalent to the statement that for
a given € > 0, > °, Pr(|pu, — | > €) < co. Note that a necessary condition for this is that
Pr(|un — p| > €) — 0, and thus almost sure convergence implies convergence in probability. To
estimate Pr(|u, — p| > €), the Chebyshev inequality [26]

((pn — 1)*)aue
62

Pr(|pn — pl > €) <
can be employed. Hence for convergence in probability, it is sufficient that ((p, — p)?)que — 0
as n — 00, while for almost sure convergence, it is sufficient that S°°° | ((un — p)?)qur < 00.

In Section 1.7.1 and Exercises 1.7 q.1 the Wigner semi-circle law has been studied through
its moments. We have shown that (N *~1Tr(X?¥))qug+ — mop where mgy, is the corresponding
moment of the Wigner semi-circle law. To study convergence in probability and almost sure we
thus must study

2
Var(N~* 1 TeX?F) = (N 1Te X)) qup- — ((N_k_1“X2k>GUE*) :
Now, analogous to (1.111) we have

k
((TrXZ )2>GUE* = < Z Zivia "7 Zigpin Zhig2 T Zjakdt >

l:l ..... i =1

J1semdop=1
Regarding iy, ... ,i9; as fixed, and taking into consideration (1.112), one sees [99]
1
2k\2 — _—
(rX))ave- = <Z zl: lzzm lekll>GUE*<j 2]: 1211]2 ZJ2le>GUE* (1 + O(N2))
1yeeyl2k=— 1yJ2k=

= (TrX*)qup- (1 + O(%))

It follows from this that >.3%_; Var(N*~1TrX?¥) < oo, so we can conclude that almost sure
convergence holds and so the Wigner semi-circle law is the limiting density of all sequences of
GUE matrices, up to a set of measure zero.

We remark that almost sure convergence to the Wigner semi-circle law can also be established
for sequences of matrices from the Gaussian $-ensemble, in the case of general 8 > 0 [49].
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