
ar
X

iv
:m

at
h.

O
A

/0
40

52
58

 v
1 

13
 M

ay
 2

00
4


SECOND ORDER FREENESS AND FLUCTUATIONS


OF RANDOM MATRICES:


II. UNITARY RANDOM MATRICES


´ JAMES A. MINGO (∗), PIOTR SNIADY (‡), AND ROLAND SPEICHER (∗)(†) 

Abstract. We extend the relation between random matrices and 
free probability theory from the level of expectations to the level of 
fluctuations. We show how the concept of “second order freeness”, 
which was introduced in Part I, allows one to understand global 
fluctuations of Haar distributed unitary random matrices. In par
ticular, independence between the unitary ensemble and another 
ensemble goes in the large N limit over into asymptotic second 
order freeness. As a corollary, this also yields a generalization of a 
theorem of Diaconis and Shahshahani to the case of several inde
pendent unitary matrices. 

1. Introduction 

In Part I of this series [MSp] we introduced the concept of second 
order freeness as the mathematical concept for dealing with the large N 
limit of fluctuations of N ×N -random matrices. Whereas Voiculescu’s 
freeness (of first order) provides the crucial notion behind the leading 
order of expectations of traces, our second order freeness is intended 
to describe in a similar way the structure of leading orders of global 
fluctuations, i.e., of variances of traces. In Part I we showed how fluc
tuations of Gaussian and Wishart random matrices can be understood 
from this perspective. Here we want to aim at a corresponding treat
ment for fluctuations of unitary random matrices. Global fluctuations 
of unitary random matrices have received much attention in the last 
decade, see, e.g, the survey article of Diaconis [D]. 
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Our main concern will be to understand the relation between unitary 
random matrices and some other ensemble of random matrices which is 
independent from the unitary ensemble. This includes in particular the 
case that the second ensemble consists of constant (i.e., non-random) 
matrices. A basic result of Voiculescu tells us that on the level of 
expectations, independence between the ensembles goes over into as
ymptotic freeness. We will show that this result remains true on the 
level of fluctuations: Independence between the ensembles implies that 
we have asymptotic second order freeness between their fluctuations. 

As a byproduct of these results we also get a generalization to the 
case of several independent unitary random matrices of a classical result 
of Diaconis and Shahshahani [DS]. Their one-dimensional case states 
that, for a unitary random matrix U , the family of traces Tr(Un) con
verge towards a Gaussian family where the covariance between Tr(Um) 
and Tr(U∗n) is given by n · δmn. In the case of several independent uni
tary random matrices, one has to consider traces in reduced words of 
these random matrices, and again these converge to a Gaussian family, 
where the covariance between two such reduced words is now given by 
the number of cyclic rotations which match one word with the other. 
This result was also independently derived by Rădulescu [R] in the 
course of his investigations around Connes’s embedding problem. 

The paper is organized as follows. In Section 2, we recall all the nec
essary definitions and results around permutations, unitary random 
matrices, and second order freeness. We will recall all the relevant no
tions from Part I, so that our presentation will be self-contained. How
ever, for getting more background information on the concept of second 
order freeness one should consult [MSp]. In Section 3, we derive our 
main result about the asymptotic second order freeness between uni
tary random matrices and another independent random matrix ensem-
ble. This yields as corollary that independent unitary random matrices 
are asymptotically free of second order, implying the above mentioned 
generalization of the result of Diaconis and Shahshahani [DS]. 

2. Preliminaries 

2.1. Some general notation. For natural numbers m, n ∈ N with 
m < n, we denote by [m, n] the interval of natural numbers between m 
and n, i.e., 

[m, n] := {m, m + 1, m + 2, . . . , n − 1, n}. 
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For a matrix A = (aij)
N 
i,j=1, we denote by Tr the unnormalized and by 

tr the normalized trace, 

N 
� 1 

Tr(A) := aii, tr(A) := Tr(A). 
N 

i=1 

If we are considering classical random variables on some probability 
space, then we denote by E the expectation with respect to the cor
responding probability measure and by kr the corresponding classical 
cumulants (as multi-linear functionals in r arguments); in particular, 

k1{a} = E{a} and k2{a1, a2} = E{a1a2} − E{a1}E{a2}. 

2.2. Permutations. We will denote the set of permutations on n el
ements by Sn. We will quite often use the cycle notation for such 
permutations, i.e., π = (i1, i2, . . . , ir) is a cycle which sends ik to ik+1 

(k = 1, . . . , r), where ir+1 = i1. 

2.2.1. Length function. For a partition π ∈ Sn we denote by #π the 
number of cycles of π and by |π| the minimal number of transpositions 
needed to write π as a product of transpositions. Note that one has 

|π| + #π = n for all π ∈ Sn. 

2.2.2. Non-crossing permutations. Let us denote by γn ∈ Sn the cycle 

γn = (1, 2, . . . , n). 

For all π ∈ Sn one has that 

|π| + |γnπ
−1| ≤ n − 1. 

If we have equality then we call π non-crossing. Note that this is 
equivalent to 

#π + #(γnπ
−1) = n + 1. 

If π is non-crossing, then so are γnπ
−1 and π−1γn; the latter is called 

the (Kreweras) complement of π. 
We will denote the set of non-crossing permutations in Sn by NC(n). 

Note that such a non-crossing permutation can be identified with a 
non-crossing partition, by forgetting the order on the cycles. There is 
exactly one cyclic order on the blocks of a non-crossing partition which 
makes it into a non-crossing permutation. 
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2.2.3. Annular non-crossing permutations. Fix m, n ∈ N and denote 
by γm,n the product of the two cycles 

γm,n = (1, 2, . . . , m)(m + 1, m + 2, . . . , m + n). 

More generally, we shall denote by γm1,...,mk 
the product of the corre

sponding k cycles. 
We call a π ∈ Sm+n connected if the pair π and γm,n generates 

a transitive subgroup in Sm+n. A connected permutation π ∈ Sm+n 

always satisfies 

(1) |π| + |γm,nπ
−1| ≤ m + n. 

If π is connected and if we have equality in that equation then we 
call π annular non-crossing. Note that with π also γm,nπ

−1 is annu
lar non-crossing. Again, we call the latter the complement of π. Of 
course, all the above notations depend on the pair (m, n); if we want to 
emphasize this dependency we will also speak about (m, n)-connected 
permutations and (m, n)-annular non-crossing permutations. 

We will denote the set of (m, n)-annular non-crossing permutations 
by SNC(m, n). Again one can go over to annular non-crossing partitions 
by forgetting the cyclic orders on cycles; however, in the annular case, 
the relation between non-crossing permutation and non-crossing parti
tion is not one-to-one. Since we will not use the language of annular 
partitions in the present paper, this is of no relevance here. 

Annular non-crossing permutations and partitions were introduced 
in [MN]; there, many different characterizations—in particular, the one 
(1) above in terms of the length function—were given. 

2.2.4. Other notations. We say that A = {A1, . . . , Ak} is a partition of 
a set [1, n] if sets Ai = {Ai,1, . . . , Ai,l(i)} are disjoint and non–empty and 
their union is equal to [1, n]. We call A1, . . . , Ak the blocks of partition 
A. For a permutation π ∈ Sn we say that a partition A is π-invariant 
if π preserves each block Ai. 

If A = {A1, . . . , Ak} and B = {B1, . . . , Bl} are partitions of the same 
set, we say that A ≤ B if for every block Ai there exists some block Bj 

such that Ai ⊆ Bj . For a pair of partitions A, B we denote by A ∨ B 
the smallest partition C such that A ≤ C and B ≤ C. We denote by 
1[1,n] = [1, n] the biggest partition of the set [1, n]. 

π
If, for 1 ≤ i ≤ k, πi is a permutation of the set Ai we denote by 

1 × · · · × πk ∈ Sn the concatenation of these permutations. We say 
that π = π1 × · · · × πk is a cycle decomposition if additionally every 
factor πi is a cycle. 
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2.3. Haar distributed unitary random matrices and the Wein

garten function. In the following we will be interested in the asymp
totics of special matrix integrals over the group U(N) of unitary N×N -
matrices. We always equip the compact group U(N) with its Haar 
probability measure and address its elements then as Haar distributed 
unitary random matrices. Thus the expectation E over this ensemble 
is given by integrating with respect to the Haar measure. 

´ 

The expectation of products of entries of Haar distributed unitary 
random matrices can be described in terms of a special function on the 
permutation group. Since such considerations go back to Weingarten 
[W], Collins [C] calls this function the Weingarten function and denotes 
it by Wg. We will follow his notation. In the following we just recall the 
relevant information about this Weingarten function, for more details 
we refer to [C, CS]. 

We use the following definition of the Weingarten function. For 
π ∈ Sn and N ≥ n we put 

Wg(N, π) = E[U11 · · · UnnU 1π(1) · · · Unπ(n)], 

where U = (Uij)
N 
i,j=1 is an N ×N Haar distributed unitary random ma

trix. Sometimes we will suppress the dependency on N and just write 
Wg(π). This Wg(N, π) depends on π only through its conjugacy class. 
General matrix integrals over the unitary groups can be calculated as 
follows: 

(2) E[Ui ′ 1j ′ · · · Ui′ ′ · · · U injn 
]

1 njn 
U i1j1 

= δi1i ′ · · · δini ′ δj1j ′ · · · δjnj ′ Wg(βα−1). 
α(1) α(n) β(1) β(n) 

α,β∈Sn 

The Weingarten function is a quite complicated object, and its full 
understanding is at the basis of questions around Itzykson-Zuber inte
grals. For our purposes, only the behaviour of leading orders in N of 

´ 

µ(π)N

Wg(N, π) is important. One knows (see, e.g., [C, CS]) that the leading 
order in 1/N is given by |π| + n and increases in steps of 2. 

Let us use the following notation for the first two orders (π ∈ S(n)): 

−(|π|+n) + φ(π)N−(|π|+n+2) + O 
� 

N−(|π|+n+4)
� 

Wg(N, π) = . 

One knows that µ is multiplicative with respect to the cycle decom
position, i.e., 

µ(π1 × π2) = µ(π1) · µ(π2). 

The important part of the second order information is contained in the 
leading order of Wg(π1 × π2) − Wg(π1)Wg(π2), which is given by 

µ2(π1, π2) := µ(π1 × π2) − µ(π1)φ(π2) − φ(π1)µ(π2). 
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Note that we have 

µ2(π1, π2) = µ2(π2, π1). 

Collins [C] has general counting formulas for the calculation of µ and µ2 

(and also higher order analogues); however, a conceptual explanation 
of µ2 seems still to be missing. µ is the Moebius function of the lattice 
of non-crossing partitions (thus determined by Catalan numbers), and 
this fact is quite well understood by the relation between µ and asymp
totic freeness of unitary random matrices. In a similar way, one should 
get a conceptual understanding of µ2 by the relation with second order 
freeness. In the present paper we will not pursue further this direction, 
but we will come back to it in forthcoming investigations. Here we will 
not rely on the concrete values of µ or µ2, but will only use their above 
mentioned basic properties. 

2.4. Second order freeness. In [MSp], we introduced the concept 
of second order freeness which is intended to capture the structure 
of the fluctuation functionals for random matrices arising in the limit 
N → ∞, in the same way as the usual freeness captures the structure 
of the expectation of the trace in the limit. We recall the relevant 
notations and definitions. 

Definition 2.1. A second order non-commutative probability space 
(A, ϕ1, ϕ2) consists of a unital algebra A, a tracial linear functional 

ϕ1 : A → C with ϕ(1) = 1 

and a bilinear functional 

ϕ2 : A×A → C, 

which is tracial in both arguments and which satisfies 

ϕ2(a, 1) = 0 = ϕ2(1, b) for all a, b ∈ A. 

Notation 2.2. Let unital subalgebras A1, . . . ,Ar ⊂ A be given. 
1) We say that a tuple (a1, . . . , an) (n ≥ 1) of elements from A is 
cyclically alternating if, for each k, we have an i(k) ∈ {1, . . . , r} such 
that ak ∈ Ai(k) and, if n ≥ 2, we have i(k) 6= i(k+1) for all k = 1, . . . , n. 
We count indices in a cyclic way modulo n, i.e., for k = n the above 
means i(n) 6= i(1). Note that for n = 1, we do not impose any condition 
on neighbours. 
2) We say that a tuple (a1, . . . , an) of elements from A is centered if we 
have 

ϕ1(ak) = 0 for all k = 1, . . . , n. 
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Definition 2.3. Let (A, ϕ1, ϕ2) be a second order non-commutative 
probability space. We say that unital subalgebras A1, . . . ,Ar ⊂ A are 
free with respect to (ϕ1, ϕ2) or free of second order, if they are free (in 
the usual sense [VDN]) with respect to ϕ1 and if the following condition 
for ϕ2 is satisfied: Whenever we have, for n, m ≥ 1, tuples (a1, . . . , an) 
and (bm, . . . , b1) from A such that both are centered and cyclically 
alternating then we have 

(1) If n 6= m, then 

ϕ2(a1 · · ·an, bm · · · b1) = 0. 

(2) If n = m = 1 and a ∈ Ai, b ∈ Aj, with i 6= j, then 

ϕ2(a, b) = 0. 

(3) If n = m ≥ 2, then 

n−1 

ϕ2(a1 · · ·an, bn · · · b1) = ϕ1(a1b1+k) · ϕ1(a2b2+k) · · ·ϕ(anbn+k). 
k=0 

For a visualization of this formula, one should think of two concentric 
circles with the a’s on one of them and the b’s on the other. However, 
whereas on one circle we have a clockwise orientation of the points, on 
the other circle the orientation is counter-clockwise. Thus, in order to 
match up these points modulo a rotation of the circles, we have to pair 
the indices as in the sum above. 

Recall that in the combinatorial description of freeness [NSp], the 
extension of ϕ1 to a multiplicative function on non-crossing partitions 
plays a fundamental role. In the same way, second order freeness will 
rely on a suitable extension of ϕ2. 

Notation 2.4. Let (A, ϕ1, ϕ2) be a second order non-commutative 
probability space. Then we extend the definition of ϕ1 and ϕ2 as fol
lows: 

∞ 

 

ϕ1 : Sn ×An) → C 

n=1 

(π, a1, . . . , an) 7→ ϕ1(π)[a1, . . . , an] 

is, for a cycle π = (i1, i2, . . . , ir), given by 

ϕ1(π)[a1, . . . , an] := ϕ1(ai1 ai2 ai3 · · ·air 
) 

and extended to general π ∈ Sn by multiplicativity 

ϕ1(π1 × π2)[a1, . . . , an] = ϕ1(π1)[a1, . . . , an] · ϕ1(π2)[a1, . . . , an]. 



� 

8 ´ J. A. MINGO, P. SNIADY, AND R. SPEICHER 

In a similar way, 
∞ 

 

ϕ2 : Sm × Sn × Am × An) → C

m,n=1


(π1, π2, a1, . . . , am, b1, . . . , bm) 7→ ϕ2(π1, π2)[a1, . . . , am; b1, . . . , bn] 

is defined, for two cycles π1 = (i1, i2, . . . , ip) and π2 = (j1, j2, . . . , jr), 
by 

ϕ2(π1, π2)[a1, . . . , am; b1, . . . , bn] := ϕ2(ai1 ai2 · · · aip, bj1 bj2 · · · bjr 
) 

and extended to the general situation by a ‘cocycle property’ 

(3) ϕ2(π1 × π2, π3)[a1, . . . , am; b1, . . . , bn] 

= ϕ2(π1, π3)[a1, . . . , am; b1, . . . , bn] · ϕ1(π2)[a1, . . . , am, b1, . . . , bn] 

+ ϕ2(π2, π3)[a1, . . . , am; b1, . . . , bn] · ϕ1(π1)[a1, . . . , am, b1, . . . , bn]. 

and 

(4) ϕ2(π1, π2 × π3)[a1, . . . , am; b1, . . . , bn] 

= ϕ2(π1, π2)[a1, . . . , am; b1, . . . , bn] · ϕ1(π3)[a1, . . . , am, b1, . . . , bn] 

+ ϕ2(π1, π3)[a1, . . . , am; b1, . . . , bn] · ϕ1(π2)[a1, . . . , am, b1, . . . , bn]. 

3. Asymptotic second order freeness for unitary random 
matrices 

Notation 3.1. Suppose ǫ : [2l] → {−1, 1} is such that 
�2l ǫi = 0. i=1 

We write ǫ−1(1) = {p1, p2, . . . , pl} and ǫ−1(−1) = {q1, q2, . . . , ql}, with 

p1 < p2 < · · · < pl and q1 < q2 < · · · < ql. Let S
(ǫ) 

be the permutations 2l 

π in S2l such that π takes {p1, . . . , pl} onto {q1, . . . , ql} and vice versa. 

Given a π in S
(ǫ) 

we may extract a pair of permutations απ and βπ in 
S

2l 

l from the equations 

π(pαπ(k)) = qk and π(qk) = pβπ(k) 

S

and conversely: (α, β) 7→ πα,β. Thus we have a bijection of sets between 
(ǫ) 

and Sl × Sl.2l


Given π ∈ S2
(ǫ
l 
) 
we let ˜
π ∈ Sl be defined by 

π2(pk) = pπ̃(k) 

Note that π̃α,β = βα−1 . 

Note that we have

#π = #˜
π, 

and thus 
|π| = |π̃| + l. 
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Lemma 3.2. Fix l ∈ N and γ ∈ S2l. Let, for N ∈ N, U be a Haar 
distributed unitary N × N random matrix. Let ǫ : [2l] → {−1, 1} such 

that 
�2l ǫi = 0. Then we have for all 1 ≤ p1, . . . , p2l, r1, . . . , r2l ≤ Ni=1 

that 

l 

(5) E U ǫ1 · · · U ǫ2l 
� 

= δpk,rγ(π(k)) 
Wg(N, π̃).p1,rγ(1) p2l,rγ(2l) 

π∈S
(ǫ) k=1 
2l 

′ ′ Proof. Let ik, i k, jk, j be such that k 
� 

∗ 
�

∗ E U ǫ1 · · · U ǫ2l 
� 

= E 
� 

Ui ′ ′ · · · Ui
l
′ ,j ′ Uj1,i1 

· · · Ujl,il 
,p1,rγ(1) p2l,rγ(2l) 1,j 1 l 

′ ′ i.e. ik = rpk
, j = rγ(pk), ik = rγ(qk), and jk = rqk 

. Thus we have k 

′ ik = rγ(qk) = rγ(π(pα(k))), and iα(k) = rpα(k) 
, 

and 
′ jβ(k) = rγ(pβ(k)) = rγ(π(qk)), and jk = rqk 

which shows that 

′ ik = iα(k) ⇐⇒ r = pα(k) 
rγ(π(pα(k))) 

and 
′ jk = jβ(k) ⇐⇒ rqk 

= rγ(π(qk)). 

Thus 
l 2l 

′ ′ = δrk,rγ(π(k)) 
.δik ,i 

α(k) 
δjk,j 

β(k) 

k=1 k=1 

Hence 
� 

∗ 
�

∗ E U ǫ1 · · · U ǫ2l 
� 

= E 
� 

Ui1
′ ,j ′ · · · Ui

l
′ ,j ′ Uj1,i1 

· · · Ujl,ilp1,rγ(1) p2l,rγ(2l) 1 l 

′ · · · δini ′ ′ · · · δjnj ′ Wg(βα−1)= δi1i
α(1) α(n) 

δj1j
β(1) β(n)


α,β∈Sn


2l 

= δpk,rγ(π(k)) 
Wg(π̃). 

π∈S
(ǫ) k=1

2l


We can now address the question how to calculate expectations of 
products of traces of our matrices. The following result is exact for 
each N ; later on we will look on its asymptotic version. 

Note that the notation Trπ[D1, . . . , Dn] for π ∈ Sn is defined in the 
usual multiplicative way, as was done in Notation 2.4 for ϕ1. 
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Proposition 3.3. Fix m1, . . . , mk ∈ N such that m1 + · · · + mk = 2l 
is even. Let, for fixed N ∈ N, U be a Haar distributed unitary N ×N-
random matrix and D1, . . . , D2l be N × N-random matrices which are 
independent from U . Let ǫ : [2l] → {−1, 1} with 

�2l ǫi = 0. Put i=1 

γ = γm1,...,mk 
. Then 

(6) 

U ǫm1+m2 )
� 

E Tr(D1U
ǫ1 · · ·D U ǫm1 )Tr(Dm1+1U

ǫm1+1 · · ·D · · · m1 m1+m2 

= Wg(N, π̃) · E Trγπ[D1, . . . , D2l] . 

π∈S
(ǫ) 
2l 

Proof. Summations over r’s and p’s in the following formulas are from 
1 to N . We denote γ = γm1,··· ,mk 

. 

U ǫm1+m2 )
� 

E Tr(D1U
ǫ1 · · ·D U ǫm1 )Tr(Dm1+1U

ǫm1+1 · · ·D · · · m1 m1+m2 

= E U ǫ1 · · · U ǫ2l 
� 

· E 
� 

(D1)r(1)p(1) · · · (D2l)r(2l)p(2l)p1,rγ(1) p2l,rγ(2l)


r1,...r2l


p1,...,p2l


2l 

= δpk,rγ(π(k)) 
Wg(π̃) · E (D1)r(1)p(1) · · · (D2l)r(2l)p(2l) 

r1,...r2l π∈S
(ǫ) k=1

2l
p1,...,p2l 

2l 

= Wg(π̃) δpk,rγ(π(k)) 
· E (D1)r(1)p(1) · · · (D2l)r(2l)p(2l) 

π∈S
(ǫ) p1,...,p2l k=1

2l
 r1,...r2l 

= Wg(π̃)E Trγπ[D1, . . . , D2l] . 

π∈S
(ǫ) 
2l 

Motivated by the result of Voiculescu [Voi1, Voi2] that Haar dis
tributed unitary random matrices and constant matrices are asymp
totically free, we want to investigate now the corresponding question 
for second order freeness. It will turn out that one can replace the 
constant matrices by another ensemble of random matrices, as long as 
those are independent from the unitary random matrices. Of course, 
we have to assume that the second ensemble has some asymptotic limit 
distribution. This is formalized in the following definition. Note that 
we make a quite strong requirement on the vanishing of the higher 
order cumulants. This is however in accordance with the observation 
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that in many cases the unnormalized traces converge to Gaussian ran
dom variables. Of course, if we have a non-probabilistic ensemble of 
constant matrices, then the only requirement is the convergence of k1; 
all other cumulants are automatically zero. 

Definition 3.4. 1) Let {A1, . . . , As}N be a sequence of N ×N -random 
matrices. We say that they have a second order limit distribution if 
there exists a second order non-commutative probability space (A, ϕ1, 
ϕ2) and a1, . . . , as ∈ A such that for all polynomials p1, p2, . . . in s 
non-commuting indeterminates we have 

(7) lim k1 tr[p1(A1, . . . , As)] = ϕ1 p1(a1, . . . , as) , 
N→∞ 

(8) lim k2 Tr[p1(A1, . . . , As)], Tr[p2(A1, . . . , As)] = 
N→∞ 

ϕ2 p1(a1, . . . , as); p2(a1, . . . , as) , 

and, for r ≥ 3, 

(9) lim kr Tr[p1(A1, . . . , As)], . . . , Tr[pr(A1, . . . , As)] = 0. 
N→∞ 

2) We say that two sequences of N×N -random matrices, {A1, . . . , As}N 

and {B1, . . . , Bt}N , are asymptotically free of second order if the se
quence {A1, . . . , As, B1, . . . , Bt}N has a second order limit distribution, 
given by (A, ϕ1, ϕ2) and a1, . . . , as, b1, . . . , bt ∈ A, and if the unital 
algebras 

A1 := alg(1, a1, . . . , as) and A2 := alg(1, b1, . . . , bt) 

are free with respect to (ϕ1, ϕ2). 

Notation 3.5. Fix m, n ∈ N and let ǫ : [1, m + n] → {−1, +1}. We 

m+n in Notation 3.1, for the case where 
�m+ndefined S

(ǫ) 
k=1 ǫ(k) = 0, as 

those permutations in Sm+n for which ǫ alternates cyclically between 
−1 and +1 on all cycles. Note that this definition also makes sense 
in the case where the sum of the ǫ’s is not equal to zero, then we just 

have S
(ǫ) 

= ∅. Let ǫ1 and ǫ2 be the restrictions of ǫ to [1, m] and to m+n 

[m + 1, m + n], respectively. Then we put 

S
(ǫ) 
NC(m, n) := S

(ǫ) 
∩ SNC(m, n)m+n 

and 

NC(ǫ1)(m) := S(ǫ1) ∩ NC(m), NC(ǫ2)(n) := S(ǫ2) ∩ NC(n).m n 
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Theorem 3.6. Let {U}N be a sequence of Haar distributed unitary 
N × N-random matrices and {A1, . . . , As}N a sequence of N × N
random matrices which has a second order limit distribution, given by 
(A, ϕ1, ϕ2) and a1, . . . , as ∈ A. Furthermore, assume that {U}N and 
{A1, . . . , As}N are independent. Fix now m, n ∈ N and consider poly
nomials p1, . . . , pm+n in s non-commuting indeterminates. If we put 
(i = 1, . . . , m + n) 

Di := pi(A1, . . . , As) and di := p1(a1, . . . , as), 

then we have for all ǫ(1), . . . , ǫ(m + n) ∈ {−1, +1} that 

(10) lim k2 Tr(D1U
ǫ1 · · ·DmU ǫm), Tr(Dm+1U

ǫm+1 · · ·Dm+nU ǫm+n) 
� 

N→∞ 

= µ(π̃) · ϕ1(γm,nπ)[d1, . . . , dm+n] 

π∈S
(ǫ) 
NC

(m,n) 

+ µ2(˜ π2) · ϕ1(γmπ1 × γnπ2)[d1, . . . , dm+n]π1, ˜

π1∈NC(ǫ1)(m) 

π2∈NC(ǫ2)(n) 

+ µ(˜ π2) · ϕ2(γmπ1, γnπ2)[d1, . . . , dm+n] .π1 × ˜

Note that in the case where the sum of the ǫ’s is different from zero 
this just states that the limit of k2 vanishes. 

Proof. For notational convenience, we will sometimes write m+n = 2l 
in the following, and also use γ := γm,n. 

We have 

k2 Tr(D1U
ǫ1 · · ·DmU ǫm), Tr(Dm+1U

ǫm+1 · · ·D2lU
ǫ2l) 

� 

= E Tr(D1U
ǫ1 · · ·DmU ǫm)Tr(Dm+1U

ǫm+1 · · ·D2lU
ǫ2l) 

� 

−E Tr(D1U
ǫ1 · · ·DmU ǫm) 

� 

· E Tr(Dm+1U
ǫm+1 · · ·D2lU

ǫ2l) 

= Wg(π̃) · E Trγπ[D1, . . . , D2l] 

π∈S
(ǫ) 
2l 

π1)Wg(˜− Wg(˜ π2)·E Trγmπ1[D1, . . . , Dm] ·E Trγnπ2[Dm+1, . . . , D2l] 

π1∈S
(ǫ1) 
m 

π2∈S
(ǫ2) 
n 

= Wg(π̃) · E Trγπ[D1, . . . , D2l] 

π∈S
(ǫ) 
2l 

π connected 
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+ Wg(˜ π2) · E Trγmπ1×γnπ2[D1, . . . , D2l]π1 × ˜

π1∈S
(ǫ1) 
m 

π2∈S
(ǫ2) 
n 

π1)Wg(˜−Wg(˜ π2)·E Trγmπ1[D1, . . . , Dm] ·E Trγnπ2[Dm+1, . . . , D2l] 

The leading order in the first summand for a connected π is given by 

π−1)N−(|˜
� �


µ(˜ π−1|+(m+n)/2) · N#(γπ) · E trγπ[D1, . . . , Dm+n] =


= Nm+n−|π−1|−|γπ| · µ(π̃−1) · E trγπ[D1, . . . , Dm+n] 
� 

. 

Recall that, for a connected π−1, we always have 

m + n − |π−1| − |γπ| ≤ 0, 

and equality is exactly achieved in the case where π−1 is annular non-
crossing. Thus, in the limit N → ∞ the first sum gives the contribution 

π−1µ(˜ ) · ϕ1(γπ−1)[d1, . . . , dm+n]. 

π−1∈S
(ǫ) 
NC

(m,n) 

For a disconnected π1 ×π2, on the other side, the leading orders in N of 
all relevant terms are given as follows: Wg(˜ π2) and Wg(˜ π2)π1 ×˜ π1)Wg(˜
have leading order (note that µ is multiplicative) 

1 
�|π1|+|π2| 

µ(˜ π2) ;π1)µ(˜
N 

E Trγmπ1[D1, . . . , Dm] · E Trγnπ2[Dm+1, . . . , Dm+n] and 

E Trγmπ1×γnπ2[D1, . . . , Dm+n] have leading order 

1 
�|γnπ1|+|γnπ2|−(m+n) 

ϕ1(γmπ1 × γnπ2)[d1, . . . , dm+n] ;
N 

Wg(˜ π2) − Wg(˜ π2) has leading order π1 × ˜ π1)Wg(˜

� �|π−1|+|π−1|−21 21 
π−1 µ2(˜ , π̃−1) · 1 2 N 

and k2 Trγmπ1[D1, . . . , Dm], Trγnπ2[Dm+1, . . . , Dm+n] has leading or
der 

� 

1 
�|γmπ1|+|γnπ2|+2−(m+n)


ϕ2(γmπ1, γnπ2)[d1, . . . , dm; dm+1, . . . , dm+n] .

N 

|π

If we note that

−1| + |γmπ1| ≥ m + 1
1 
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for all π−1 ∈ Sm, with equality if and only if π−1 is non-crossing, and 1 1 

the same for π−1, then we see that the leading orders in N are coming 2 

exactly from non-crossing π−1 and π−1 and their contribution is as 1 2 

claimed in the assertion. � 

k
In the following we address the estimates for higher order cumulants, 

r for r ≥ 3. 
For a permutation π ∈ S2l, ǫ : [1, 2l] → {−1, +1} and N ≥ 2l we 

denote 

ζ (ǫ) 
� 

= k2l U ǫ1 , . . . , U ǫ2l 
� 

π p1,q1 p2l,q2l 
, 

where the indices p1, . . . , p2l, q1, . . . , q2l were chosen in such a way that 

pi = qj ⇐⇒ π(i) = j . 

It was shown by Collins [C] that 

= O N2−|π|−2#π
� 

(11) ζ (ǫ) 
� 

= O 
� 

N2−2l−#π
� 

.π 

If D1, . . . , Dl are random matrices and π ∈ Sl is a permutation with 
a cycle structure π = π1 ×· · ·×πr with πi = (πi,1, . . . , πi,l(i)) we denote 

kπ(D1, . . . , Dl) = kr Tr(Dπ1,1 · · ·Dπ1,l(1) 
), Tr(Dπ2,1 · · ·Dπ2,l(2) 

), . . . . 

When σ ∈ Sn and A = {A1, . . . , Ak} is a σ–invariant partition of 
[1, n] we can always write σ = σ1 × · · · × σk where σi is a permutation 
of the set Ai. We denote 

ζ
(ǫ) 

= ζ (ǫ) · · · ζ (ǫ) 
σ,A σ1 σk 

and 

kσ,A(D1, . . . , Dn) = kσ1 (D1, . . . , Dn) · · ·kσk 
(D1, . . . , Dn) 

by a multiplicative extension. The relation between moments and cu
mulants implies that for any σ ∈ Sn 

Wg(σ̃) = ζ
(ǫ) 
σ,A, 

A 

E Trσ(D1, . . . , Dn) = kσ,A(D1, . . . , Dn) 
A 

where the sums run over all σ–invariant partitions A. 

Theorem 3.7. Let {U}N be a sequence of Haar distributed unitary 
N × N-random matrices and {A1, . . . , As}N a sequence of N × N
random matrices which has a second order limit distribution, given by 
(A, ϕ1, ϕ2) and a1, . . . , as ∈ A. Furthermore, assume that {U}N and 
{A1, . . . , As}N are independent. Fix now k, m1, · · · , mk ∈ N and set 
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γ = γm1,...,mk
, n = m1 + · · ·+ mk. Consider polynomials p1, . . . , pl in s 

non-commuting indeterminates. We set (i = 1, . . . , l) 

Di := pi(A1, . . . , As) 

and consider ǫ1, . . . , ǫn ∈ {−1, +1} 
Then, for every fixed r ∈ N 

(12) 

kr Tr(D1U
ǫ1 · · ·D U ǫm1 ), Tr(Dm1+1U

ǫm1+1 · · ·D U ǫm1+m2 ), · · · 
� 

m1 m1+m2

= ζ
(ǫ) 

· kγπ,B(D1, . . . , Dn),π,A 

π∈S
(ǫ) A,B 
n A∨B=1[1,n] 

where the second sum runs over pairs (A, B) of partitions of [1, n] such 
that A is π–invariant and B is γπ–invariant and furthermore A∨B = 
1[1,n]. 

Secondly, we have for r ≥ 3 that 
(13) 
lim kr Tr(D1U

ǫ1 · · ·D U ǫm1 ), Tr(Dm1+1U
ǫm1+1 · · ·D U ǫm1+m2 ), · · · 

� 

= 0.m1 m1+m2
N→∞ 

Proof. In order to show (12) it is enough to use Proposition 3.3 and to 
see that (12) indeed fulfills the defining property of cumulants. 

In order to show (13), we have to control the order of the appearing 

products ζ
(ǫ) 
π,A · kγπ,B. 

Let ci denote the number of blocks of B which contain exactly i 
cycles of γπ. By the definition of these quantities we have, by using 
(11), that 

ζ
(ǫ) 

= O N2#A−n−#π
� 

π,A 

and, by using our assumption on the limit distribution of the D’s, that 

O N c1 , if B has only blocks of size 1 and 2 
kγπ,B = 

o N c1 , if B has at least one block of size ≥ 3 

Note that 
c1 = #(γπ) − ici. 

i≥2 

Thus we get 

N2#A−n−#π+#(γπ)−2c2 if c3 + c4 + · · · = 0, 
ici 

�ζ
(ǫ) 

·kγπ,B(D1, . . . , Dn) = 
O 
� 

N2#A−n−#π+#(γπ)−π,A o i≥2 if c3 + c4 + · · · ≥ 1. 

Suppose first that c3 + c4 + · · · ≥ 1; then 

ici = (c2 + c3 + · · · ) + (i − 1)ci ≥ 1 + (#(γπ) − #B) 
i≥2 i≥1 
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and hence 

N2#A−n−#π+#(γπ)−1−#(γπ)+#B
� 

ζ
(ǫ) · kγπ,B(D1, . . . , Dl) = o .π,A 

Note now that the requirement A ∨ B = 1[1,n] implies that 

(14) #A + #B ≤ n + 1. 

So we can in this case estimate our asymptotics against 

N#A−#π
� 

,o 

which goes to zero in any case, because #A ≤ #π. 
Suppose now, on the other hand, that c3 + c4 + · · · = 0; then 

#(γπ) − #B = c2, 

and thus 

N2#A−n−#π+#(γπ)−2(#(γπ)−#B)
� 

ζ
(ǫ) 

· kγπ,B(D1, . . . , Dn) = O .π,A 

Using again (14) and 

#π + #(γπ) = 2n − (|π| + |γπ|) ≥ 2n − |γ| = n + r 

we can estimate the asymptotics in this case against 

O 
� 

N2−r 
� 

, 

which gives, for r ≥ 3, the required bound. � 

Theorem 3.8. Let {U}N be a sequence of unitary N × N-random 
matrices and {A1, . . . , As}N a sequence of N × N-random matrices 
which has a second order limit distribution. If {U}N and {A1, . . . , As}N 

are independent, then they are asymptotically free of second order. 

Proof. The asymptotic freeness with respect to k1{tr[·]} is essentially 
the same argument as Voiculescu’s proof [Voi1, Voi2] for the case of 
constant matrices, see also the proof of Collins [C]. 

Theorem 3.7 provides the bound on higher order cumulants so we 
need to prove now only the second order statement. 

We have to consider cyclically alternating and centered words in 
the U ’s and the A’s. For the U ’s, every centered word is a linear 
combination of non-trivial powers of U , thus it suffices to consider such 
powers. Thus we have to look at expressions of the form 

(15) k2 Tr(B1U
i(1) · · ·BpU

i(p)), Tr(U j(r)Cr · · ·U
j(1)C1) 

� 

, 

where the B’s and the C’s are centered polynomials in the A’s and 
i(1), . . . , i(p), j(1), . . . , j(r) are integers different from zero. We have 
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to show that in the limit N → ∞ the expression (15) converges to 
(16) 

p−1 

ϕ1(B1C1+k)ϕ1(U
i(1)U j(1+k))δpr · · ·ϕ1(BpCp+k)ϕ1(U

i(p)U j(p+k)). 
k=0 

We can bring the expression (15) into the form considered in Theorem 
3.6 by inserting 1’s between neighbouring factors U or neighbouring 
factors U∗ . If we relabel the B’s, C’s, and 1’s as D’s then we have to 
look at the following situation: For polynomials pi in s non-commuting 
indeterminates we consider 

Di := pi(A1, . . . , As), 

which are either asymptotically centered or equal to 1. The latter 
case can only appear if we have cyclically the pattern . . . UDiU . . . or 

∗. . . U∗DiU . . . . Formally, this means: 

• if ǫγ−1(i) = ǫi then either Di = 1 (for all N , i.e., pi = 1) or 

lim k1 tr[Di] = 0. 
N→∞ 

• if ǫγ−1(i) 6= ǫi then 

lim k1 tr[Di] = 0. 
N→∞ 

We can now use Theorem 3.6 for calculating the limit 

lim k2 Tr(D1U
ǫ1 · · ·DmU ǫm ), Tr(Dm+1U

ǫm+1 · · ·Dm+nU ǫm+n ) 
� 

, 
N→∞ 

and we will argue that most terms appearing there will vanish. Con
sider first the last two sums, corresponding to π1 ∈ NC(m) and π2 ∈ 
NC(n). Since π1 is non-crossing we have that #π1 +#(γmπ−1) = m+1. 1 

Since each cycle of π1 must contain at least one U and one U∗, we have 
m 

#π1 ≤ ,
2 

which implies #(γmπ−1) ≥ m/2 + 1. However, this can only be true if 1 

γmπ−1 contains at least two singletons. Note that if (i) is a singleton 1 

of γmπ−1 and if we have Di = 1 for that i, then we have 1 

γ−1γmπ−1(i) = i, thus π−1(i) = m (i) = γ−1(i),1 1 

and hence 

= ǫγ−1(i) = ǫi,ǫπ−1(i)1 

which is not allowed because π1 is from NC(ǫ1)(m), i.e., it must connect 
alternatingly U with U∗ . Thus, both 

ϕ1(γmπ1 × γnπ2)[d1, . . . , dm+n] 
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and 

ϕ2(γmπ1, γnπ2)[d1, . . . , dm+n] 

are zero, because at least one singleton (i) gives the contribution ϕ1(di) = 
0. 

Consider now the first summand, for a π ∈ S
(ǫ) 
NC(m, n). Let us put 

again γ := γm,n. Since π is annular non-crossing we have 

|π| + |γπ−1| = m + n, 

or 

#π + #(γπ−1) = m + n. 

Again, each cycle of π must contain at least two elements, i.e., 

m + n 
#π ≤ ,

2 

thus 

#(γπ−1) ≥ 
m + n

. 
2 

If γπ−1 has a singleton (i), then this will contribute ϕ1(di) and since, 
as above the case di = 1 is excluded for a singleton, we get a van
ishing contribution in this case. This implies that, in order to get a 
non-vanishing contribution, γπ−1 must contain no singletons, which, 
however, means that we must have 

m + n 
#(γπ−1) = 

m + n
, and thus also #π = 

2 2 

i.e., all cycles of γπ−1 and of π contain exactly two elements. This, 
however, can only be the case if each cycle connects the outer circle 
with the inner circle. Being non-crossing fixes the permutation up to 
a rotation of the inner circle. Thus, in order to get a non-vanishing 
contribution, we need m = n and 

π = (1, γk(2n))(2, γk(2n − 1)), . . . , (n, γk(n + 1)) 

for some k = 0, 1, . . . , n−1. Note that π must always couple a U with a 
∗U and the factor µ(π̃) is always 1 for such pairings. This gives exactly 

the contribution as needed for second order freeness. � 

Let us exploit a bit more the implications of Theorem 3.6. In partic
ular, we can choose there all Di equal to 1. Then we have that all ϕ1 

contribute a factor 1 and all ϕ2 contribute a factor 0. Thus the third 
term in Eq. (10) vanishes and we get the following formula for the limit 
of k2. 
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Corollary 3.9. Let {U}N be a sequence of Haar distributed unitary 
N × N-random matrices. Then {U}N has a second order limit distri
bution which is given by 

(17) lim k2 Tr(U ǫ1 · · ·U ǫm), Tr(U ǫm+1 · · ·U ǫm+n) 
� 

N→∞ 

= µ(˜ π1, ˜π) + µ2(˜ π2) 

π∈S
(ǫ) 
NC

(m,n) π1∈NC(ǫ1)(m) 

π2∈NC(ǫ2 (n) 

U
Since U is unitary, we can reduce the considered products of U and 
∗ either to 1, a power of U or a power of U∗ . In this reduced form the 

above corollary recovers a classical result of Diaconis and Shahshahani 
[DS]. (One should, however, note that Corollary 3.9 has also some 
merits in its general non-reduced form. In principle, it allows to derive 
the values of µ2. These kind of questions will be considered elsewhere.) 

Corollary 3.10. Let {U}N be a sequence of Haar distributed unitary 
N × N-random matrices. Then {U}N has a second order limit distri
bution, which is given by (m, n ≥ 0) 

(18) lim k2 Tr(Um), Tr(Un) = 0 
N→∞ 

and 

(19) lim k2 Tr(Um), Tr(U ∗n) 
� 

= nδmn 
N→∞ 

Proof. The main observation to be made is that contributing permu
tations must connect alternatingly a U with a U∗ . Thus, in the case of 

π

k2 Tr(Um), Tr(Un) there are no contributing permutations at all and 
we get zero in this case. In the other case, there are no possibilities for 

1 or π2 and the only π ∈ S
(ǫ) 
NC(m, n) which connect in this alternating 

way are pairings, where each block must contain one U and one U∗ . 
This forces m and n to be equal. In that case there are n possibilities 
for such pairings: we have the freedom of pairing the first U with any 
of the U∗ . After this choice is made the rest is determined. Since µ(π̃) 
is always 1 for such pairings we get the claimed formula. � 

Of course, a natural question in this context is how the above result 
generalizes to the case of several independent unitary random matrices. 
Note that after we have established the existence of a second order 
limit distribution for Haar distributed unitary random matrices we can 
use an independent copy of them as the ensemble {A1, . . . , As} in our 
Theorem 3.8. Clearly this can be iterated to give the following. 
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Theorem 3.11. Let {U (1)}N , . . . , {U (r)}N be r sequences of Haar dis
tributed unitary N × N-random matrices. If {U (1)}N , . . . , {U (r)}N are 
independent, then they are asymptotically free of second order. 

This contains the information about the fluctuation of several inde
pendent Haar distributed unitary random matrices. Again, it suffices 
to consider traces of reduced words in our random matrices, i.e., ex
pressions of the form 

(20) 
k(1) · · ·Uk(n)

][UTr i(1) i(n) 

for n ∈ N, and k(r) ∈ Z\{0} and i(r) 6= i(r + 1) for all r = 1, . . . , n 
(where i(n + 1) = i(1)). But these are now products in cyclically 
alternating and centered variables, so that by the very definition of 
second order freeness we get 

k(1) l(n) 
· · ·U

l(1) 
](21) lim k2 Tr[Ui(1) · · ·U

k(m)
], Tr[Ui(m) j(n) j(1)N→∞ 

n−1 
k(1) 

U
k(1+r) 

· · ·ϕ1 Ui
k
(
(
n
n
)
)
U

k(n+r)
= δmn ϕ1 Ui(1) i(1+r) i(n+r) . 

r=0 

The contribution of ϕ1 in these terms vanishes unless the matrices and 
their powers match. Note also that the vanishing of higher cumulants 
can be rephrased in a more probabilistic language by saying that the 
random variables (20) converge to a Gaussian family. 

Corollary 3.12. Let {U(1)}N , . . . , {U(r)}N be independent sequences of 
Haar distributed unitary N ×N-random matrices. Then, the collection 
(20) of unnormalized traces in cyclically reduced words in these random 
matrices converges to a Gaussian family of centered random variables 
whose covariance is given by the number of matchings between the two 
reduced words, 

(22) 
k(1) l(n) 

· · ·U
l(1) 

]lim k2 Tr[Ui(1) · · ·U
k(m)

], Tr[Ui(m) j(n) j(1)N→∞ 

= δmn · # r ∈ {1, . . . , n} | i(s) = j(s + r), 

k(s) = −l(s + r) ∀s = 1, . . . , n 

This result was also obtained independently in the recent work of 
Rădulescu [R] around Connes’s embedding problem. 

The following theorem gives an easy way to construct families of 
random matrices which are asymptotically free of second order. 

Theorem 3.13. Let {U}N be a sequence of Haar distributed unitary 
N × N-random matrices, let {A1, . . . , As}N be a sequence of N × N-
random matrices which has a second order limit distribution and let 
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{B1, . . . , Bt}N be another sequence of N × N-random matrices which 
has a second order limit distribution. Furthermore, assume that {A1, 
. . . , As, B1, . . . , Bt}N and {U}N are independent. Then the sequences 
{A1, . . . , As}N and {UB1U

−1, . . . , UBtU
−1}N are asymptotically free of 

second order. 

Proof. Observe that under the additional assumption that {A1, . . . , As, 
B1, . . . , Bt} has a second order limit distribution it is enough to apply 
Theorem 3.8. In order to show that the latter assumption is not nec
essary, one has to revisit the proof to see that trivial bounds on mixed 
moments and cumulants are sufficient to show asymptotic second order 
freeness. 

We say that a tuple {B1, . . . , Bs} of N×N -random matrices is U(N)– 
invariant if for every U ∈ U(N) the joint probability distribution of 
the random matrices {B1, . . . , Bs} coincides with the joint probability 
distribution of the random matrices {UB1U

−1, . . . , UBsU
−1}. 

Corollary 3.14. Let {A1, . . . , As}N be a sequence of N × N-random 
matrices which has a second order limit distribution and let {B1, . . . , 
Bt}N be a sequence of U(N)–invariant N ×N-random matrices which 
has a second order limit distribution. Furthermore assume that the ma
trices {A1, . . . , As}N and the matrices {B1, . . . , Bt}N are independent. 
Then the sequences {A1, . . . , As}N and {B1, . . . , Bt}N are asymptoti
cally free of second order. 
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